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In this article, we introduce a method to apply ideas from electrostatics to
parameterize the open space around an object. By simulating the object as
a virtually charged conductor, we can define an object-centric coordinate
system which we call Electric Coordinates. It parameterizes the outer space
of a reference object in a way analogous to polar coordinates. We also in-
troduce a measure that quantifies the extent to which an object is wrapped
by a surface. This measure can be computed as the electric flux through
the wrapping surface due to the electric field around the charged conductor.
The electrostatic parameters, which comprise the Electric Coordinates and
flux, have several applications in computer graphics, including: texturing,
morphing, meshing, path planning relative to a target object, mesh param-
eterization, designing deformable objects, and computing coverage. Our
method works for objects of arbitrary geometry and topology, and thus is
applicable in a wide variety of scenarios.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, languages,
and systems

General Terms: Algorithms, Design, Experimentation, Theory

Additional Key Words and Phrases: Coordinates, parameterization, cloth
control

H. Wang and K. A. Sidorov are joint first authors. Principal theoretical
contribution is by K. A. Sidorov and Principal experimental contribution is
by H. Wang. This work was supported by EU FP7 TOMSY and EPSRC
Standard Grant (EP/H012338/1).
Authors’ addresses: H. Wang, School of Informatics, The University of
Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK; K. A. Sidorov,
Department of Computer Science and Informatics, Cardiff University,
Queen’s Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, UK; P.
Sandilands, T. Komura (corresponding author), School of Informatics, The
University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK;
email: tkomura@inf.ed.ac.uk.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2013 ACM 0730-0301/2013/09-ART155 $15.00

DOI: http://dx.doi.org/10.1145/2503177

ACM Reference Format:

Wang, H., Sidorov, K. A., Sandilands, P., and Komura, T. 2013. Harmonic
Parameterization by electrostatics. ACM Trans. Graph. 32, 5. Article 155
(September 2013), 12 pages.
DOI: http://dx.doi.org/10.1145/2503177

1. INTRODUCTION

Designing and controlling in a nontrivially constrained open space
around objects that include concavities is a difficult problem due to
the difficulty of efficient parameterization. One of the main prob-
lems occurring with previous methods is that the state of the open
space is simply described by raw world 3D Cartesian coordinates,
rather than in some way relative to the surfaces of the other ob-
jects involved in the scene. This makes avoiding collisions and
inter-penetrations very difficult. An object-centric state space, based
on the spatial relationship between the geometry of different con-
stituent objects, would greatly help to avoid such problems.

One possible solution is to represent configurations in the open
space by parameters with respect to the shape of a reference ob-
ject. The generalized barycentric coordinates (or cage-based co-
ordinates) is a related concept. Using generalized barycentric co-
ordinates, one can first design an intricate scene in a canonical
configuration and then edit the scene by manipulating the vertices
of the lattice that surrounds the scene. However, in general, gen-
eralized barycentric coordinates are designed to parameterize the
interior of a closed volume but not for the exterior of the lattice, and
so can be unintuitive for this type of control.

In this article, we propose to use ideas from electrostatics to pa-
rameterize the state of an object in the open space with respect to
the underlying reference object. First, we define an object-centric
curvilinear coordinate system which we call Electric Coordinates.
We simulate the reference objects in the scene as virtually charged
conductors. The field lines and equipotential surfaces of the re-
sulting electric field parameterize the open space that surrounds the
objects. The electric potential around a charged object is a harmonic
function, which cannot have local extrema except at the boundary.
Therefore, the electric field lines (curves of steepest descent of the
electric potential) all diverge to points at infinity without being
attracted to local extrema. This produces a mapping between the
surface points of objects with arbitrary topology and a sphere at
infinity.

Also, by using shape-invariant properties of Gauss’s law in inte-
gral form [Katsikadelis 2002], we can compute a parameter called
flux, that quantifies the degree to which the reference object is
surrounded by another object (hereafter referred to as deformable
object) such as a cloth. The flux can be used as a reference to
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direct movements of deformable objects in Electric Coordinates to
cover or uncover the surface of a charged object. Control of wrap-
ping maneuvers is a challenging problem in computer animation
and robotics [Igarashi et al. 2009; Wang and Komura 2012] when
the deformable object has very many degrees of freedom (such as
a cloth composed of many particles). By Stokes’ theorem [Spivak
1965], simply moving the boundary of the deformable surface in
the direction of the fastest increase of the flux through the surface
will result in the most efficient movements to cover the reference
object.

We believe the electrostatic parameters may have several appli-
cations in computer graphics, including path planning, designing
deformable objects, spherical mesh parameterization, and guiding
complex maneuvers such as wrapping objects by cloth or a bag.

As our method works for objects of arbitrary geometry (convex
or nonconvex) and topology (can handle multiple objects as well as
objects with holes or handles) it can be robustly applied in various
scenarios.

Contributions.

—We provide a novel parameterization of the space, based on the
concepts of electrostatics.

—We give an abstract, intuitive, shape-insensitive measure of cov-
erage of one object by another.

—We supply a method to synthesize complex wrapping movements
without global path planning.

The rest of the article is organized as follows. After reviewing
the related work in Section 2, we describe the charge simulation
technique and then discuss the electrostatic parameters comprising
Electric Coordinates and flux in Section 3. We discuss the advan-
tages and limitations of our method with respect to other methods
as well as quantitatively evaluating our approach in Section 4, and
after we make concluding remarks in Section 5.

2. RELATED WORK

Our work is most closely related to parameterization of the space and
its applications to 3D computer graphics, which is reviewed first.
As we solve Partial Differential Equations (PDEs) by a Boundary
Element Method (BEM), we next review works that make use of
PDEs for computer graphics applications and BEM in particular.
Finally, we review spatial relationship-based representations that
are used in computer animation.

Volume and Mesh Parameterization. Generalized barycentric co-
ordinates, such as Harmonic Coordinates [Joshi et al. 2007],
Green Coordinates [Lipman et al. 2008], and Mean Value Coor-
dinates [Floater 2003; Ju and Schaefer 2005], represent the lo-
cation of points in the interior of a closed lattice (cage) as a
function of control points’ positions. Using generalized barycen-
tric coordinates, animators can easily deform 2D and 3D objects
by adjusting the control points of the surrounding cage. Although
each approach has its advantages and disadvantages, most are not
designed to parameterize the space outside the cage; and those
that do [Ju and Schaefer 2005] suffer artifacts (see comparison in
Joshi et al. [2007]).

One way to parameterize the outer space of objects is to use dis-
tance fields. Distance fields can parameterize the space with respect
to a reference object based on the Euclidean distance. This has been
applied to, for example, image processing, motion planning, col-
lision detection, and 3D design [Perlin and Hoffert 1989; Schmid
et al. 2011]. The mapping between a point and the nearest point on

the surface is discontinuous in a distance field at medial axes, where
the distance to different points on the surface is the same (i.e., near
medial axes, nearby points in 3D space can map to distant points
on the surface). This may be an issue when a smooth continuous
parameterization is preferred.

Peng et al. [2004] produce smooth continuous distance fields that
parameterize the space in the vicinity (thick shell) of a reference
object. They apply their method to define 3D textures and displace-
ment maps within the parameterizable shell. While an improvement
over naı̈ve distance fields, the method of Peng et al. [2004] is not
capable of continuously parameterizing the entire space: far from
the shell their method suffers the same problem as distance fields,
because the potential fields in their work can have local extrema to
which the solutions of their ODEs (field lines) attract. This is partic-
ularly prominent when reference objects have nonconvex geometry.
Although our method has some similarities with Peng et al. [2004],
there are important fundamental differences (notably, the harmonic
nature of our potential fields), due to which our approach does not
suffer the aforesaid problems. We further compare our method and
that by Peng et al. [2004] in Section 4.

Mesh parameterization is also related to our study as our method
produces a mapping between points on the surface of an object
and those on a sphere at infinity. As mesh parameterization is a
vast research area, we only refer to the core spherical parameteri-
zation papers that are strongly related to our work. The readers are
referred to Floater and Hormann [2005] and Sheffer et al. [2007]
for a more complete review. Spherical parameterization has been
intensely researched, and methods based on projected Gauss-Seidel
iterations [Gu et al. 2004], barycentric embedding [Gotsman et al.
2003], coarse-to-fine embedding [Shapiro and Tal 1998; Praun and
Hoppe 2003], and exterior derivatives [Gu and Yau 2003] have
been proposed. Such methods are quantitatively evaluated by cri-
teria based on computation time and distortions of angles, lengths,
and areas. An important qualitative criterion is whether they flip
triangles or not (produce a one-to-one mapping) [Shapiro and Tal
1998; Praun and Hoppe 2003; Gotsman et al. 2003]. We evaluate
our method from these viewpoints in Section 4.

PDEs and Boundary Element Method. In computer graphics, PDEs,
and especially the Laplace equation, have been widely used for ap-
plications such as quadrilateral remeshing [Dong et al. 2005], mesh
editing [Au et al. 2007], image editing [Pérez et al. 2003], and gen-
eralized barycentric coordinates [Joshi et al. 2007]. In these works,
the solutions are computed by Finite Element Methods (FEM) in
which the domain is tessellated (divided into small elements) uni-
formly or hierarchically (e.g., with octrees [Kazhdan et al. 2007])
and then the PDE is solved on the tessellated domain. Such an
approach is not suitable for our purposes (solving Laplace equa-
tion in the open space) as it would require tessellating the entire
infinite space and solving a large-scale linear system whose dimen-
sion is the number of elements. As we need to be able to compute
the field everywhere in the 3D open space (or a large working
subvolume), the size of the grid can be very large in some cases,
depending on the working volume and the geometry of the reference
object.

On the contrary, we use a Boundary Element Method (BEM), in
which the PDEs are rewritten in an integral form. (For an overview
of BEMs, see Katsikadelis [2002].) The BEM represents a 3D field
by a function basis that has its degrees of freedom attached to
a surface. The advantage of the BEM is that we do not need to
apply a tessellation as in FEM everywhere in space, because the
field can be computed analytically from the boundary parameters.
All computations in our method are performed on the tessellated
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boundary of the space. BEMs are, in general, advantageous when
the size of the volume in question is much larger (in terms of the
number of elements required to achieve a given accuracy) than the
size of the boundary, as is the case in this article. The disadvantage
is that the computation of the boundary parameters is costly as it is
necessary to solve a dense linear problem. We later show that we
can still solve large enough problems for practical applications in
Section 4.

Control Based on Spatial Relationship. Modeling of spatial relation-
ships has been applied to deformation transfer [Zhou et al. 2010]
and motion retargeting [Ho et al. 2010]. Zhou et al. [2010] apply the
minimal spanning tree to preserve the relationship between a dress
and a character while dancing. Ho et al. [2010] use the Delaunay
tetrahedralization to encode the spatial relationship between inter-
acting characters. The structures used in these works are not suitable
for parameterizing the continuous configuration space due to their
discrete nature. A continuous parameterization is more suitable for
synthesizing novel motions.

Ho and Komura [2009] use the Gauss Linking Integral to guide
movements of a garment when dressing. A character successfully
passes its arms through the sleeves of a shirt in their demo. This
approach is successfully applied for controlling robots to put a shirt
on humans [Tamei et al. 2011]. In these approaches, the body is rep-
resented by articulated 1D links and the surface-surface relationship
is not considered. However, modeling surface-surface relationships
would be advantageous for animating close interactions between
a garment and a character. We are going to seek an approach to
quantify such relationships in this article.

In summary, a continuous parameter space based on spatial re-
lationship is most suitable for guiding wrapping-like movements.
However, there has been little work that quantifies the surface-
surface relationship of a deformable object wrapping around a ref-
erence object. This work achieves this.

3. ELECTROSTATIC PARAMETERIZATION

The idea behind our method is to simulate the reference object as
a charged conductor using a method called charge simulation (see
Section 3.1), and use its physical properties to parameterize the open
space around the object, and also to compute an abstract and intuitive
parameter which represents the spatial relationship between the
reference object and a deformable object that surrounds it.

More specifically, electrostatics provides us with the following
two important concepts: (1) An object-centric curvilinear coordi-
nate system: A curvilinear coordinate system, which we call Electric
Coordinates, can be defined using the electric potential and field
lines induced by the charged reference object (see Section 3.2).
(2) Coverage: A physical quantity called flux, which can be com-
puted by Gauss’s law (see Section 3.3), represents the coverage of
the reference object by the deformable object. This can be used to
guide wrapping movements.

The algorithmic overview of the calculation and the pointers to
each corresponding section is presented in Figure 1.

3.1 Charge Simulation

In this section, we explain charge simulation, which is a BEM-
based approach to compute charge distribution on the conductor
that satisfies the required boundary conditions. Charge simulation
allows us to solve the Laplace equation by performing computations
only on the boundary of the reference object, which then allows us
to compute the electric field and potential everywhere in the space
analytically using the superposition principle.

Fig. 1. The algorithmic overview of our approach.

Charge simulation is, in general, a continuous problem. We dis-
cretize it by assuming that the objects are formed by a mesh of tri-
angles, each of which has a constant distribution of charge. Shortly,
we first describe how this discretization applies to the superposition
principle, and then to the charge simulation.

Superposition Principle. Let us first describe the computation of
the electric field and potential by the superposition principle. The
total electric field at some point x in space is a vectorial sum of
electric fields produced by all point charges. A general continuous
formulation, for an arbitrary distribution of charge, can be expressed
as a volume integral of charge density over the region of the charge
distribution

E(x) =
∫

V

dE = 1

4πε0

∫
V

ρ

r(x)2
r̂ dV, (1)

where ρ is the charge density being integrated (the amount of charge
per unit volume), dV is the differential volume element, r̂ is the unit
direction vector from dV to x, and r is the distance between x and
dV . The electric potential is defined similarly.

P (x) =
∫

V

dP = 1

4πε0

∫
V

ρ

r(x)
dV (2)

(Note also that the electric field is simply the negative gradient of
the potential.)

In our method, we use a discrete representation of charges on the
tesselated boundary of an object. Assume that the reference object,
simulated as a charged conductor, is represented by a triangulated
mesh (on which all of the charge resides). Let Ti denote the triangles
of the mesh. According to the superposition principle, the electric
field vector Etot, at an arbitrary point x in space, generated by the
whole object is the sum of the electric fields generated by individual
triangles Ti .

Etot(x) =
∑

i

E(Ti, x) (3)

The preceding also applies to electric potential.

Ptot(x) =
∑

i

P (Ti, x) (4)

The electric field and potential generated by an individual triangle
are functions of its vertex coordinates and of the distribution of
charge on the surface of the triangle. Analytic expressions exist
for the electric field and potential due to a uniformly charged
triangle [Goto et al. 1992] (also presented in Appendices A.1 and
A.2). We found experimentally that this approximation is sufficient
in most cases. For a more accurate modeling of charge distribution,
Tatematsu et al. [2000, 2002] give expressions for the field due to
a 2nd- and 3rd-order charge distribution. For ease of explanation,
let us assume constant charge distribution on each triangle. (The
principle remains the same for higher-order interpolated charge
distribution.)
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Charge Simulation on a Triangle Mesh. We now describe how the
continuous charge simulation problem is converted into a discrete
problem. The charge simulation method computes the distribution
of charges such that the electric potential is the same everywhere
on the surface. We solve this problem in practice by applying two
disretizations: (1) assuming the constant charge distribution model
on each triangle, (2) we enforce the same potential at each triangle’s
barycenter by computing the charges carried by all triangles. Shortly
we formalize how the continuous nature of the charge simulation
problem is converted into a discrete problem.

The charge simulation method computes the distribution of
charges as if the object is a thin, charged conductor at equilibrium.
On the surface of a conductor, the charge is distributed in such a way
that the electric field at each point on the surface is normal to the
surface. (Indeed, if the electric field was not normal at some point
on the surface, then there would be a nonzero tangential component
that would move the charge along the surface, which contradicts the
equilibrium assumption.) Or, equivalently, the charge is distributed
in such a way that the electric potential at every point on the surface
of a conductor (at equilibrium) is the same (recall that the electric
field is the negative gradient of the electric potential). The problem
of charge simulation is, therefore, to compute charge density ρ at
every probe point p (on the surface of the object) such that the re-
sulting field satisfies the preceding properties. Let � be the surface
of the conductor, and let x ∈ � be points of the surface. Then charge
simulation amounts to solving the equation

const = P (p ∈ �) =
∫

�

ρ(x)

|p − x| d�(x), for ρ(x) at all x ∈ �.

(5)
In our approach, we discretize the charge (assume a constant

charge distribution on each of the triangles of the mesh), in order
that charge simulation can be easily performed by a linear method.
Assume that each triangle carries (yet unknown) charge qi . Let
P (Ti, qi, x) be the potential at an arbitrary point x in space due to
the i-th triangle Ti carrying charge qi . Further, the potential due to
a charged element is proportional to its charge, so P (Ti, qi, x) =
qiP (Ti, 1, x). Let pj ∈ � be probe points on the surface � of the
object, each of which set to the barycenter of the j -th triangle. The
potential at these probe points must be the same on the surface of
a conductor. Without loss of generality, assume the potential on the
surface is 1 “volt”. By principle of superposition, for some probe
point pj this potential of 1 volt is the sum of potentials due to all
triangles of the object.

Ptot(pj ) =
∑

i

P (Ti, qi, pj ) =
∑

i

qiP (Ti, 1, pj ) = 1 (6)

We need to find all charges {qi} of individual triangles such
that Eq. (6) holds for every probe point pj on the surface of the
object. If there are n triangles, we have n unknowns qi , i = 1 . . . n.
To find {qi} we need to compose a linear system of n equations,
each of the form as Eq. (6) reflecting the fact that the potentials at
all probe points pj are equal to 1 volt. The resulting system, with
one equation per probe point, has the form⎧⎪⎨

⎪⎩
q1P (T1, 1, p1) + · · · + qnP (Tn, 1, p1) = 1

· · ·
q1P (T1, 1, pn) + · · · + qnP (Tn, 1, pn) = 1,

(7)

where P (Ti, 1, pj ) is the potential due to the i-th triangle carrying
unit charge (which is computed analytically [Goto et al. 1992;
Tatematsu et al. 2000; 2002]; see Appendix A.1 (Eq. (16)) for the
expressions) and {qi} are the unknown charges.

Note that although the analytic expressions for the potential due to
an element are exact, the fact that the charge is modeled discretely is
only an approximation: in the exact solution to the charge simulation
problem, the resulting distribution of charge within triangles will
not, in general, be constant. Therefore, there are situations when no
exact solution exists for Eq. (7) and the previous system should be,
therefore, solved in the least squared sense.

When performing the simulation on low-resolution meshes, it
is prudent to increase the density of the mesh to more accurately
represent the charge distribution, especially in sharp protruding
areas where charge density is higher. We discuss this issue in more
detail in Section 4.2.

Once {qi} are computed, we can calculate the electric field and
potential anywhere in the space using the superposition principle
(Eq. (3), Eq. (4), Eq. (16), Eq. (20)).

Figure 2 and Figure 3 visualize the distribution of charges over the
surfaces of different objects, the resulting potential (in the slices),
and the resulting electric fields by plotting field lines dx/dt = E(x).

3.2 Electric Coordinates

Every point in the 3D space can be characterized by its potential and
a unique gradient line (field line) on which it lies. We use such phys-
ical properties of electrostatics to define our Electric Coordinates.
Indeed, the field lines emanating from each point on the surface
never intersect1 and since the potential harmonically decreases with
distance from the object, each point along a particular field line has
a unique potential (see Figure 4 (right)). Each field line is defined
by its starting point on the surface (in some parametric (u, v) coor-
dinates). Therefore, except at saddle points of the potential (which
are discussed shortly), each point in the 3D space can be repre-
sented by two orthogonal elements: its electric potential (Px) and
the parametric coordinates (u, v) of the origin of the corresponding
field line on the surface of the charged object.

Since electrostatic potential is a harmonic function, it cannot have
maxima or minima (except at the boundary). However, isolated
saddle points (points of unstable equilibrium, where the electric
field is zero and, therefore, no field line may be traced from them)
may exist. It can, however, be shown that saddle points cannot form
a volume according to the maximum principle [Berenstein and Gay
1997]. Indeed, if there was a region of space where the electric field
is everywhere zero, the potential in this region would be constant.
According to the maximum principle, the potential must then be
constant in the entire domain. Therefore, the potential can either
be constant (this is a trivial case, e.g., as inside a conductor) or it
may not contain areas of saddle points. Therefore, saddle points are
isolated and in practice they can be ignored.

The electric potential Px is computed analytically by Eq. (16) in
Appendix A.1. The projected point Sx on the reference object is
computed by tracing the field lines from x back onto the reference
object. Field lines, a common way of depicting the electric fields,
are the integral curves of dx/dt = E(x), or, equivalently, curves of
steepest descent of the potential, and so tracing a field line from
some starting point x is a simple initial value problem.

1Electric field lines never intersect: the tangent to an electric field line at each
point is in the same direction as the electric field vector at that point (because,
by definition, the field lines are the integral curves of dx/dt = E(x)). If two
electric field lines intersected, this would have meant that the electric field
(a one-valued smooth vector function) at the intersection point has two
different directions, which is impossible. More formally, this follows from
the Existence and Uniqueness theorem (Cauchy-Lipschitz).
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Fig. 2. Electric fields around surfaces. The color of the object represents the
charge density (red = high, blue = low). The bunny model is from Stanford
3D Scanning Repository [Stanford Computer Graphics Laboratory 2013].
The vase model is from Princeton Shape Benchmark [Shilane et al. 2004].

Fig. 3. Electric fields around surfaces (continued). The vase model is from
Princeton Shape Benchmark [Shilane et al. 2004].

Fig. 4. Left: the isosurfaces and the field lines of the distance field. Right:
the grid (field lines and equipotentials) of our curvilinear Electric Coordi-
nates system.

An analogous parameterization in the case of, for example, dis-
tance fields is discontinuous/nonsmooth, in which discontinuities in
coverage and nonsmoothness in potential (distance) exist at medial
axes for nonconvex objects, as shown in Figure 4 (left).

Note also that the electric field inside a charged conductor at
equilibrium, which our method simulates, is zero (and the potential
is constant). Indeed, if there is a nonzero field inside then the free
charge in the conductor would move, which contradicts the equilib-
rium condition. Because of the zero field, the proposed coordinate
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Fig. 5. An example of growing grass along the electric field.

Fig. 6. Mapping surfaces to a sphere. Color indicates the resulting spherical
coordinates.

system, based of field lines and equipotential surfaces, is undefined
inside an object.

The spatial parameterization by Electric Coordinates is useful for
various purposes in computer graphics. The mapping between the
3D positions and the Electric Coordinates is smooth and continuous
(except around integral lines passing through saddle points). Such
a feature is useful for designing deformable objects in concave
constrained space between the charged objects. A simple example
of growing grass in constrained concave areas towards an open
space without self-collisions is shown in Figure 5: starting from
seed points distributed over the ground, we compute the electric
field and its tangent plane, and then determine the direction in
which to grow.

It is also useful for path planning in such concave areas as colli-
sions with the charged objects can be avoided by simply examining
the electric potential. Finally, it is applicable to transferring the
configuration of deformable objects which surround a charged ob-
ject, because a self-collision-free configuration will be mapped to
another self-collision-free configuration when the geometry of the
charged object is changed.

By tracing the field lines from the surface of a charged object to
infinity (in practice, to sufficiently large distance) we can compute a
mapping between the surface and a sphere (recall that equipotential

Fig. 7. Illustration of the Gauss’s law.

Fig. 8. Different configurations of the deformable object and the reference
object, and the corresponding flux values.

surfaces at infinity are spheres). This is illustrated in Figure 6,
where color indicates the resulting coordinates on a sphere. For
objects with handles, a continuous seamless mapping to a sphere
does not exist (because of the saddle points in the middle of the
handles). However, our method admirably copes with this scenario
also: the seams occur naturally (one per handle) where the field
lines diverge around the handles, in æsthetically logical positions
(Figure 6 shows several such examples).

3.3 Computing Coverage by Gauss’s Law

We now explain how to quantify how much the reference object is
surrounded by the deformable object. Gauss’s law, which states that
the total amount of electric flux through any closed surface is pro-
portional only to the enclosed electric charge, provides a good way
to quantify such coverage. Gauss’s law in integral form [Matthews
1998] can be formulated as

� =
∮

S

E · dA =
∮

S

E · n̂dA = Q

ε0
= const, (8)

where E is the electric field being integrated over the surface S
which is surrounding the charged object (with charge Q), dA is
an infinitesimal region of S (a vector with area dA pointing in the
normal direction n̂), and ε0 is the electric constant (see Figure 7,
left). This means the total electric flux � through a closed surface
S depends only on the charge Q enclosed by that surface, and does
not depend on the shape of the surface. If the surface is not closed,
the integral in Eq. (8) will not account for all of the flux and the
value of � will be smaller. Since the integral in Eq. (8) can also
be computed for open surfaces, it becomes a good measure of how
much a surface wraps around a charge. This is illustrated in Figure 7
showing the flux through a closed and an open surface. Note also
that the dot product with the surface normal in Eq. (8) accounts for
the correct net flux even when a field line penetrates the surface
multiple times.

Examples of different configurations in which a deformable ob-
ject is surrounding the reference object are shown together with
the flux value in Figure 8. It can be observed that the more the
object is surrounded, the larger the flux. For polygonal meshes, the
integral in Eq. (8) can be computed by summing the flux through
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all the triangles in the mesh. Analytical expressions for the flux
through a triangle do exist [Van Oosterom and Strackee 1983] and
are presented in Appendix A.3 for completeness.

Animating Wrapping Movements Using Flux. Flux is a continuous
parameter which is suitable for guiding movements of deformable
objects to wrap and unwrap around the charged object. Here we
show examples of such a control by simply moving particles com-
posing the deformable object in the gradient direction of the flux.
Note that this is a very high-dimensional path-planning problem (the
deformable object typically consists of very many particles) which
is difficult to solve by any previous method: any local path-planning
algorithm can easily fall into local minima; while for reasons of ex-
ponential explosion it is also difficult to apply global path planning,
such as random exploration methods.

Let us briefly describe the technical details of the approach. In
accordance with Stokes’ theorem [Spivak 1965], the flux depends
only on the boundary of the surface, and not on the rest of the
surface. This allows us to drastically reduce the dimensionality of
the control as we only need to actively control the points on the
boundary of the surface. Let us define the position of the boundary
points by c. Given the reference flux increment at each frame, which
is represented by ��d , the corresponding updates in the boundary
points are computed by solving the following least square problem.

arg min
�c

‖�c‖2 + α‖��d − J��c‖2, (9)

where J� is the Jacobian matrix of the flux with respect to c (exper-
imental results show that flux can be well linearized with respect
to c for small updates), α is a proportionality constant for soft con-
straints (large values of α mean stricter constraints; α depends on
the scale, tuned experimentally and is set to 100 in our experiments),
��d is set to exp(0.1×�), where � is the current flux, and the first
term serves to minimize the updates c for increasing the stability.
The update �c can be computed by solving the following linear
problem. (

I + αJᵀ
�J�

)
�c = αJᵀ

���d (10)

After computing �c, the c is updated by c := c + �c. Then, a
physical simulation is run using a generic cloth simulator to control
the rest of the cloth (for example, to enforce nonstretchability) for a
single step while constraining c, and the state of the whole system is
updated. This procedure is repeated until the bag fully wraps around
the object.

Snapshots of applying this control are shown in Figure 9. Bag
models are automatically controlled to wrap around different polyg-
onal models including the Stanford Bunny and the Armadillo Man.
Even in a case where the bag starts from a folded state, it auto-
matically unfolds, directs its opening towards the reference object,
and wraps around it while adapting the shape of the opening to the
geometry of the object.

This simple control scheme can be applied for robot control and
computer animation. Although the abstract and shape-insensitive
nature of coverage increases its applicability, sometimes it can be
a disadvantage as the details cannot be controlled. In such a case,
additional positional constraints can be given by the user for finer
control.

4. DISCUSSION AND EVALUATION

In this section, we first compare our method with previous related
methods (Section 4.1). Next, we evaluate the precision of our charge
simulation approach (Section 4.2). Finally, we discuss the compu-
tational costs and complexity of our method (Section 4.3).

Fig. 9. Applications of flux-driven control for wrapping. The Armadillo
Man model is from Stanford 3D Scanning Repository [Stanford Computer
Graphics Laboratory 2013].

4.1 Comparison with Previous Methods

We compare the electric field approach with other methods for
coverage computation, parameterization of the outer space, and
spherical mesh parameterization.

Parameterization Using Distance Fields. One alternative to com-
pute the coverage and parameterize the outer space is to use the
distance field. Igarashi et al. [2009] evaluate the coverage by test-
ing if the normal vectors intersect the deformable objects, which is
similar to using the distance field. Schmid et al. [2011] propose a
modeling tool for designing on the outer side of closed surfaces.
The distance field is not suitable for our purposes as it cannot handle
nonconvex and/or multiple objects well. Singular points, lines, or
surfaces are going to exist, which results in the measure of coverage
being discontinuous when the surface in question crosses the sin-
gular area (see Figure 4, left). As the distance field is not harmonic,
it cannot be used to benefit from the local path planning to guide
the deformable object.

Parameterization Using Other Potential-Based Methods. An alter-
native for parameterizing the space around the object is the method
by Peng et al. [2004]. They consider potential fields around an object
of the form

P (x) =
∫

�

|x − y|−p dy, (11)

where x is an arbitrary point in space at which the potential is
computed, y is a point on the surface, and p is the rate of fall off.
They take advantage of the fact that for p > 1 in 3D and for p > 0
in 2D the resulting field (gradient of the potential) is normal to the
surface at the surface, and, like in this article, trace the field lines to
find a shell of small width h around the surface.

A fundamental difference between Peng et al. [2004] and our
method is that we can establish field-based coordinates, while this
is not always possible in Peng et al. [2004]. With our method,
the entire space can be parameterized. This is because the electric
potential is a harmonic function, which cannot have local extrema,
and monotonously diminishes from the surface to infinity (field
lines start at the surface and go to infinity). The fields in Peng et al.
[2004] can have local extrema (see Figure 10, left) and therefore
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Fig. 10. Left: The field computed by Peng et al. (note the local maximum
of the potential to which field lines attract). Right: The field computed by
our method (field lines always escape to infinity).

Table I. Comparison of Spherical Mesh Parameterization Using
Our Method and That of Gu et al. [2004]

Mesh Method Time (s) Stretch Edge Angle Area

Bunny∗ our 543 16.12 0.3530 0.3700 0.4780

Gu 4.54 13.43 0.4080 0.1580 0.6680

Suzanne
our 488 12.52 0.2892 0.4188 0.3457

Gu 1.05 12.23 0.3360 0.0657 0.4820

Dolphin
our 1491 22.97 0.4636 0.5763 0.3737

Gu 8.89 12.33 0.6586 0.2759 0.9319
∗Bunny model contains 1839 vertices, 3674 triangles; Suzanne model: 1687 vertices,
3370 triangles; Dolphin model: 3561 vertices, 7118 triangles.

cannot be used to define coordinates. Compare with our method in
the same situation (Figure 10, right).

Also, Gauss’s law only holds for very special fields. For Gauss’s
law to hold, the field strength must fall off exactly as 1/rd−1, where
r is distance and d is the dimensionality of the space. (Informally: in
R

d , the surface area grows as power d −1 of linear scale. Therefore,
for the Gauss’s law to hold, scaling a surface surrounding a charge by
a factor s scales the area by sd−1 and the field strength at the surface
must therefore scale by 1/sd−1, as is the case with electric fields.)
However, the field lines of Peng et al. [2004] only become perpen-
dicular to the surface (or, equivalently, the surface of the object be-
comes an equipotential) when the potential fall-off rate p in Eq. (11)
is strictly greater than d−2 and the fall-off rate of the corresponding
field is strictly greater than d −1. As the result, with their method it
is not possible to simultaneously define a measure of coverage and
the curvilinear coordinate system as we can do in this article.

Spherical Surface Parameterization. As our approach also provides
a mapping between the object surface and a sphere at infinity, we
can compare our approach with existing methods for spherical pa-
rameterization. Here we show examples of applying our method to
standard mesh models and compare it with the conformal mapping
approach [Gu et al. 2004] for reference. Results of mapping bunny,
Suzzane, and dolphin models are visualized in Figure 11. It can
be observed that area distortion effects are less obvious in electric
field-based parameterization although the polygons are sometimes
more skewed. It can be observed that our approach maps the surface
area that is exposed to the outer space to larger area and the concave
area to smaller space. Such effects can be observed at the neck of
the bunny and origin of the ears of the bunny and Suzanne.

Results of comparing the the total L2 stretch error, and absolute
distortion of triangle edge lengths, areas, and angles per unit
(see Yoshizawa et al. [2004] for the definition of these measures)
are presented in Table I. The angle distortion by the electric
field-based parameterization is larger than that by the conformal

mapping, although the area and edge length distortion is smaller.
Unfortunately, the computation time is significantly larger in our
method as it requires solving a large-scale dense linear problem,
which takes up much of the time.

In terms of qualitative comparison, our method produces a one-
to-one mapping between the object and a sphere when there are
no saddle points. Indeed, our system does not flip any triangles in
the presented examples although the conformal mapping approach
fails to keep the validity in some situations. When there are saddle
points, such as at the middle of handles, seams will be produced
at lines on the surface that converge to saddle points (the seams in
Figure 6). By cutting the surface at such seams, it will be possible to
produce a spherical mapping that does not result in triangle flipping.
Indeed, another advantage of our method is that the seams due to
handles typically occur at aesthetically natural locations.

One main advantage of our method compared to existing spher-
ical parameterization methods is that it produces collision-free tra-
jectories between the corresponding points on the surface and the
sphere at infinity. Such trajectories can be used for morphing ob-
jects into other objects while avoiding self-collisions. This can be
accomplished by morphing both objects to the sphere (or some
other potential isosurface), thus establishing correspondence. An-
other possible application is texture mapping: textures on the sphere
can be mapped onto the object as well as other objects in the open
space, such as the cloth worn on a character.

4.2 Precision of Charge Simulation

In this research, we approximate the continuous distribution of
charges discretely, by assuming constant charge distribution per
triangle, in order to simplify computations. Although analytical
solutions are known for electric field and potential due to higher-
order charge distribution on triangles [Tatematsu et al. 2000, 2002],
these analytical forms are pages-long and impractical from the im-
plementation point of view. We found that for all practical pur-
poses, our assumption (using analytical expressions from Goto et al.
[1992] also given in Appendix A for completeness) provides a good
approximation.

Using an Armadillo Man of medium (Figure 12(a)) and low
polygon count (Figure 12(c)), the isosurfaces of the electric poten-
tial at 1 volt are computed and visualized in Figure 12(b) and (d).
It can be observed that the isosurface by the medium-resolution
model well approximates the original shape while the low-count
version fails to reproduce the sharp parts such as the ears and the
tail. This is the artifact of discrete charge distribution. In such a
case, the mesh may need to be subdivided a few levels until the iso-
surface well approximates the original surface. This is illustrated in
Figure 12(e), showing the isosurface produced by a mesh subdivided
twice.

One way to quantitatively evaluate the distribution of charges is
to compute the mean square error of the potential at the surface
of the object [Malik 1989]. This is a feasible approach, as the po-
tential on the surface uniquely defines the field everywhere else in
space. In Figure 13, we present the 1 volt isosurfaces superimposed
with meshes at different resolutions. Further, at each resolution we
measure the charge simulation error by measuring the deviation of
potential from 1 volt at points densely (uniformly randomly) sam-
pled on the surface of the meshes (Figure 13, below). As expected,
the deviation is larger in the coarse model, and smaller at higher res-
olutions. The deviation from 1 volt is higher at long triangles that are
adjacent to extremities (sharp protruding areas). Where high accu-
racy is required, it may be prudent to subdivide the mesh adaptively,
increasing the resolution in areas where the deviation is the largest.
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Fig. 11. Visualization of mapping objects onto a sphere, using our approach and that of Gu et al. [2004]. The Suzzane model is from Blender [Blender
Foundation 2013] and the dolphin model is from Princeton Shape Benchmark [Shilane et al. 2004].

Fig. 12. Isosurfaces of Armadillo: (a) a 7500 triangles model; (b) its isosurface at potential 1 volt; (c) a 300 triangles low-resolution mesh; (d) its isosurface at
potential 1 volt; (e) each triangle in mesh (c) has been subdivided into 16 triangles (preserving the original shape) and the isosurface at 1 volt after subdividing
is shown.

It is important to note that although our charge simulation is
an approximation, the rest of the arguments in this article apply
exactly. Indeed, that charge distribution is approximate merely
means that the equipotential surface of 1 volt does not exactly
coincide with the surface of the object. The resulting potential
everywhere in space is still exactly harmonic and all the claims of
our approach are satisfied exactly.

4.3 Complexity and Computational Costs

Let n be the number of triangles in the charged (reference) object.
Complexity of computing electrostatic quantities at an arbitrary
point in space (electric field by Eq. (3), potential by Eq. (4)) by

summation over n triangles of the mesh is O(n). Computing the
flux by Eq. (8) through another surface of m triangles is, therefore,
O(mn). Charge simulation consists of two steps: composing the
system of equations (complexity is O(n2)) and solving the dense
linear system (complexity is O(n3), but see the following). State
updates in wrapping animation (Eq. (10)) with k control parameters
have complexity O(k), where each step requires computing the
gradient of the flux, making it O(kmn).

The charge simulation is costly as the coefficient matrix in Eq. (7)
is dense. However, this needs to be done only once for static refer-
ence objects. In animation scenarios, when the shape of the reference
objects changes gradually between frames, its computation can be
significantly accelerated by an iterative solver (e.g., Gauss-Seidel)
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Fig. 13. Errors in charge simulation due to mesh discretization. Armadillo model (red) at various resolutions (�) superimposed with the equipotential surface
of 1 volt (blue). Below: the root-mean-square and mean-absolute-difference errors from 1 volt at uniformly randomly sampled 300K points at the surface of
the object.

Table II. Performance in Guiding a Cloth to Wrap a Reference
Object

Scene def ref charge J lin

fish 2176 288 0.149 0.076 0.007

bag 868 303 0.165 0.021 0.003
def, ref: the triangle count in the deformable and the reference object, charge, J,
lin: time (in s) for charge simulation, calculating the Jacobians, and solving the
linear problem, respectively.

using the solution from the previous frame as an initial guess. If the
difference between frames is small, only a few (w) iterations would
suffice making the solution O(wn2).

The computational time required for computing the animation
of wrapping the demo using one core of a Core i7 2.67 GHz CPU
are shown in Table II. We use UMFPACK [Davis 2004] with
GotoBLAS [Goto and Van De Geijn 2008] for solving the sparse
linear problem in Eq. (10). We use PhysX 2.84 [NVidia 2013]
for the physical simulator needed for simulating the wrapping
cloth in Section 3.3. Note also that computing electric quantities
(summation over triangles) can be trivially delegated to GPU to
gain further performance. We have implemented the computation
of the field, potential, flux, as well as tracing the field lines
using CUDA, and by running the system on a GPU with 384
cores (NVIDIA GeForce GTX 560 Ti), the speedup factor is
approximately 20 compared to computing on CPU.

Limitations. Only the electric potential is explicitly defined in the
Electric Coordinates. Parameterization of the points in the same
equipotential surface can be only done by first parameterizing the
surface points of the object and then tracing the field lines using
integration.

Additionally, a small movement in 3D space can be mapped to
large movements on the surface in concave areas (Figure 14, left);
and, conversely, a small movement on the surface of the object
at a sharp convex area can be mapped to large movements in the
3D space (Figure 14, middle). Finally, field lines deflect abruptly
around saddle points at which the field is exactly zero (e.g., right
between the circles in Figure 14, right).

5. CONCLUSION AND FUTURE WORK

In this article, we have proposed a method for spatial parameteriza-
tion using electrostatics. First, we can compute a coordinate system

Fig. 14. Left: The field around a cavity. Middle: The field near a sharp
object. Right: Field lines around a saddle point.

which we call Electric Coordinates, which can uniquely parameter-
ize arbitrary points in the space. Second, we can compute the flux
which can be used to quantify the coverage of a reference object by
a surrounding deformable object.

The body-centric Electric Coordinates can be applied for mod-
eling and editing scenes that involve deformable objects such as
vegetation as it can parameterize even very constrained spaces.
Layered representations [McCann and Pollard 2009; Igarashi and
Mitani 2010] which are currently only applicable for 2D instances
can be applied to 3D scenes by using the electric potential as a
measure of depth. We have also shown that the flux can be applied
to synthesizing animations of wrapping maneuvers.

The mapping of the object of arbitrary topology to a sphere at in-
finity can have several applications, including morphing and texture
mapping. It will also be possible to produce a mesh structure which
is topologically homeomorphic to a sphere from several mesh struc-
tures which are adjacent to one another by tracking the isosurface
of a user-specified electric potential which is slightly below 1 volt,
in a way analogous to metaballs [Blinn 1982]. This can be useful
for CAD applications as it will allow users to synthesize new ob-
jects from primitive building blocks by smoothly combining them
together.

One interesting application area of our method is robotics. For
tasks that involve wrapping and grasping, our framework provides
collision-free paths as well as a good measure of how much the
reference object has been “wrapped” or “grasped” by a bag or a hand
model, respectively. In order to robustly estimate the state of the
relationships from noisy real-world data, it may be necessary to use
statistical approaches, which is an interesting direction to pursue.
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Fig. 15. Computing the potential due to a charged triangle [Goto et al.
1992].

APPENDIX: COMPUTING ELECTRIC POTENTIAL,
FIELD, AND FLUX

Here we describe how to analytically compute the electric poten-
tial [Goto et al. 1992] and field around a charged triangular element,
as well as the flux through a triangle [Van Oosterom and Strackee
1983] for the case of R

3.

A.1 Potential

Let A, B, C be the vertices of a triangle �ABC carrying uniformly
distributed charge q. We are interested in computing the electric
potential at an arbitrary point P in space.

In the following, let x denote the radius vector of a point X, and

let
−→
XY = y − x denote a vector from point X to point Y.
Let n be the unit normal to the triangle.

n = (
−→
AC × −→

AB)/|−→AC × −→
AB| (12)

Let G be the projection of point P onto the plane of the triangle:

g = p − hn, where h = n · −→
AP. Computing the potential in R

3

involves integrating

I =
∫

�ABC

1

r
dS, (13)

where r is the distance between P and S ∈ �ABC. In Goto et al.
[1992] this integral is computed as the sum of integrals over three
triangles (see Figure 15)

I = I�ABG + I�BCG + I�CAG. (14)

Denote the preceding terms generically by I (Q, R, G), for QR =
AB, BC, or CA. Let σ = (

−→
QG × −→

RG) · n, which is twice the signed
area of �QRG. Integration yields

I (Q, R, G) = σ log(N/D)

|−→RQ|

+ |h| arctan

(
σ (

−→
RQ · −→

RG)(|h| − |−→RP|)
σ 2|−→RP| + |h|(−→RQ · −→

RG)2

)
(15)

+ |h| arctan

(
σ (

−→
QR · −→

QG)(|h| − |−→QP|)
σ 2|−→QP| + |h|(−→QR · −→

QG)2

)
,

where N = −→
RQ · −→

RP + |−→RQ||−→RP|, and D = −→
RQ · −→

QP + |−→RQ||−→QP|.
Additionally, when either σ = 0 or N = 0 or D = 0 the expression
I (Q, R, G) should be evaluated to 0.

The potential at point P can now be expressed as

P (P) = |I (A, B, G) + I (B, C, G) + I (C, A, G)| . (16)

A.2 Electric Field

The electric field at an arbitrary point is simply the (negative) gra-
dient of the potential. By differentiating Eq. (15) we derive the ex-
pressions for the electric field (maintaining the previous notation).

The gradient of the first term in Eq. (15) is


 =
−→
RQ × n

|−→RQ|
log

(
N

D

)

+ σ

(( −→
RP

|−→RP|
+

−→
RQ

|−→RQ|

) /
N −

( −→
QP

|−→QP|
+

−→
RQ

|−→RQ|

)/
D

)
.

(17)

The gradients of the second and the third term in Eq. (15) are similar
in form and we express them with parameters (t, k) as

�(t, k) = nP arctan

(
σbt

v

)
(18)

+ nP · k
σ 2b2t2 + v2

(
σ t(σ 2 + t2)

(
nP |k| − k

|k| (nP · k)

)

+ b
(
(
−→
RQ × n)t − σ

−→
RQ

)(
t2(nP · k) − σ 2|k|)),

where nP = −→
GP/|−→GP| is the unit normal to �ABC in the direction of

point P; subexpressions v = σ 2|k|+ t2(nP ·k), and b = nP ·k−|k|.
The gradient of the entire Eq. (15) then becomes

J(Q, R, G) = 
 + �(
−→
RQ · −→

RG,
−→
RP) − �(

−→
RQ · −→

QG,
−→
QP), (19)

and finally the electric field at an arbitrary point P is

E(P) = − (J(A, B, G) + J(B, C, G) + J(C, A, G)) . (20)

A.3 Flux

To compute the electric flux through a triangle �ABC due to an
electric field from a unit point charge at point P, we use the expres-

sion from Van Oosterom and Strackee [1983]. Let a = −→
AP, b = −→

BP,
c = −→

CP. Then the flux �(P) is found from the expression2

tan
�

2
= (a × b) · c

|a||b||c| + (a · b)|c| + (a · c)|b| + (b · c)|a| . (21)

Note that this is the same as the solid angle around P subtended by
�ABC.

To approximate the flux through a triangle due to another charged
triangle, we use Gaussian quadrature to approximate the charged
triangle with several point charges.
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