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This article presents a new framework for synthesizing motion of a virtual character in response to the actions performed by
a user-controlled character in real time. In particular, the proposed method can handle scenes in which the characters are
closely interacting with each other such as those in partner dancing and fighting. In such interactions, coordinating the vir-
tual characters with the human player automatically is extremely difficult because the system has to predict the intention
of the player character. In addition, the style variations from different users affect the accuracy in recognizing the move-
ments of the player character when determining the responses of the virtual character. To solve these problems, our frame-
work makes use of the spatial relationship-based representation of the body parts called interaction mesh, which has been
proven effective for motion adaptation. The method is computationally efficient, enabling real-time character control for in-
teractive applications. We demonstrate its effectiveness and versatility in synthesizing a wide variety of motions with close
interactions.
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1. INTRODUCTION

In the area of virtual environments such as computer games, the demand for controlling virtual char-
acters to closely interact with user players is rapidly increasing due to the advance of full-body motion
tracking controllers. Such controllers are needed especially in movements such as dance, sports, or
martial arts with nonplayer characters.

Automatically coordinating the virtual characters with the human player during close interactions
in real time is an extremely difficult problem. First of all, the system needs to guess the intention of
the player character from his/her movements on-the-fly and automatically decide the response motion
of the virtual character such that a natural and smooth coordination can be achieved. Movements can
vary significantly between users and building a system that can robustly synthesize realistic response
motions of virtual characters subject to a wide variety of input movements is not an easy task. Second,
even after the system has correctly figured out the intention of the player, the system needs to adapt
the full-body movement of the virtual character to that of the user-controlled character taking into ac-
count the forthcoming movements and multiple constraints due to contacts between the bodies and the
environment such that its body does not collide nor penetrate through the player-controlled character.

In this article, we propose a new framework to automatically infer the intention of the user player
and control the virtual character in response to the player’s movements, which is especially useful
for real-time applications such as full-body motion games. Our framework makes use of the spatial
relationship-based representation of the body parts called interaction mesh [Ho et al. 2010], which
has been proven effective for motion adaptation. The abstract nature of the interaction mesh greatly
helps to recognize the movement of the players in real time despite the great variance of the kinematic
movements between different players. The interaction mesh can also adapt well to the movement of
the players even when they move in an unexpected way, even under a condition that the body parts of
the characters are highly constrained.

We mainly focus on the applications which involve highly constrained interactions with many con-
tacts. Such interactions were difficult to be handled by previous approaches. We implemented an inter-
active system in which the users play the role of a virtual character and a virtual partner responds to
the action of that virtual character. Figure 1 shows the setup of our proposed framework. In particular,
our proposed framework captures the motion of the user by an optical motion capture system at run-
time. A pair of prerecorded reference poses will be retrieved from the motion database using the live
captured pose as query. Then, the selected pose pair will be edited according to the movement of the
user while maintaining the spatial relationships between the body parts of the characters. By this, the
context of the interactions will be preserved as in the original motion. Finally, the synthesized poses of
the user-controlled character and the virtual partner will be displayed on the screen as visual feedback
to the user.

We show experimental results in which the virtual partner can adapt well to the movements of the
player, despite the variations between the movement performed by the player and the motion database.
The system is also applicable to a wide range of other applications such as environments in which the
interactions are more instantaneous, such as pedestrian relations in the streets.

1.1 Contributions

We propose a unified framework for interactively synthesizing movements by virtual partners in re-
sponse to the user-controlled character. The proposed method infers the intention of the user by making
use of prerecorded close interactions in the database and selects the appropriate one to facilitate the
motion synthesis process. We further enhance the interaction mesh adaptation framework for adapt-
ing the prerecorded motions to the movement of the user in real time for synthesizing virtual partner
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 3, Article 21, Publication date: June 2013.
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Fig. 1. The setup of our proposed framework. Our method provides the user with real-time visual feedbacks for interactive
partner motion synthesis. In this example, the user is controlling a virtual character (blue) to dance with the virtual partner
(red).

motions. By this, our method can handle a wide variety of close interactions between characters such
as those in partner dancing and fighting, which is difficult to be handled by previous methods.

2. RELATED WORK

In this section, we review the related research in synthesizing close interactions for humanoid charac-
ters and robots. First, we review the work in synthesizing close interactions in the computer graphics
and animation community in Section 2.1. Next, we introduce the work proposed in the robotics com-
munity for controlling partner robots in response to the movements of human in Section 2.2. While
there is a broad range of research in human-robot interactions, we are particularly interested in the
work on handling close interactions which share the same interests with our work.

2.1 Synthesizing and Controlling Close Interaction for Computer Animation

Synthesizing close interactions of humanoid characters has been an active research area in the com-
puter graphics and animation community. Liu et al. [2006] proposed a method to create scenes such as
one character avoiding another and a mother holding the hand of a child by using spacetime optimiza-
tion. However, the method requires the user to specify the constraints to control how the characters
move, which is not suitable for generating the partner’s response to the user-controlled character auto-
matically. Lee and Lee [2004] simulated boxing interactions by using reinforcement learning. Treuille
et al. [2007] also used reinforcement learning to simulate pedestrians avoiding each other. Shum et al.
[2007] proposed a method to compute the optimal action in a competitive environment by using min-
max search. They also proposed a real-time approach based on an automatically produced finite state
machine [Shum et al. 2008]. However, these methods do not handle very close interactions such as
dancing.

Ho and Komura [2009a, 2009b, 2011] proposed to use tangles from the Knot theory to analyze
and synthesize close interactions (such as wrestling and dancing) between two characters. While
their method can avoid collisions and penetrations between the body segments of the characters, the
method becomes less effective when the body parts are not tangled, which limits the variety of inter-
actions/motions that can be handled. Ho et al. [2010] proposed to use an interaction mesh for editing
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and retargeting close interactions and showed that different kinds of motions such as judo, dancing
and fighting can be handled. In this research we will apply the interaction mesh motion adaptation
framework for editing close interactions in real time.

While various methods for generating close interactions have been proposed, less attention has been
paid on synthesizing virtual characters responding to the actions performed by user-controlled char-
acters for interactive applications. Hsu et al. [2004] showed an example of generating the motions of
a virtual dance partner according to the control motion of the leader. Their method selects an optimal
sequence of synchronized partner dance motion segments based on the input motion. However, the
whole control motion sequence is required for selecting the best matched partner dance motion seg-
ments from the database. In addition, the optimal sequence of motion segments is selected by solving
a computational costly optimization problem, which makes the method not applicable for real-time
applications.

Previous work in synthesizing a virtual dance partner according to the movements of the user
[Tsuruta et al. 2007; Deng et al. 2011; Tang et al. 2011] mainly focus on selecting the best matched
motion sequence from the database. These methods do not edit the motion of the virtual partner ac-
cording to the motion of the user but simply display the recorded motions which do not contain any
body contact between the characters. As a result, close interactions cannot be handled or artifacts such
as collisions and penetrations between body parts of the characters are likely to be presented in the
synthesized motions.

2.2 Synthesizing Partner’s Response Motion in Robotics

While there is limited work in generating a virtual partner’s response to a user-controlled character in
the computer animation community, researchers in robotics have been working on controlling robots
automatically to react to the actions performed by humans. In particular, ballroom dance partner
robots [Takeda et al. 2005, 2007b, 2007a; Nakayama et al. 2009; Sakai et al. 2007] and fighting robot
[Nakamura and Yamane Laboratory 2005] have been developed to interact with humans. The details
will be discussed in the following sections.

2.2.1 Partner Dance Robots. In order to effectively coordinate the movement of the partner dance
robot with the human dancer, the future dance steps of the human dancer are estimated by using a
Hidden Markov Model (HMM) based on the human intention detected from the force sensors attached
to the upper body of the robot [Takeda et al. 2005, 2007b; Nakayama et al. 2009]. By this, the robot acts
as the follower in partner dance to interact with the human dancer. The dance step size can further
be adjusted according to the interaction between the robot and human [Takeda et al. 2007a] in order
to make the dance motion look more natural. On the other hand, planning the movements of the robot
who plays the leading role in partner dance has been proposed [Sakai et al. 2007]. In Sakai et al.
[2007], an HMM is again used for estimating the next step of the follower and collision avoidance is
taken into account when planning the movements of the robot.

Our proposed method is different from the previous work in dance partner robots as follows: First,
we intend to generate full-body motion of the humanoid characters/robots. In Takeda et al., [2005,
2007a, 2007b]; Nakayama et al. [2009], and Sakai et al. [2007], the robot has very limited degrees of
freedom. The lower body is composed by three wheels and a rigid frame. As a result, these methods
cannot be directly applied to full-body motion control or a new motion planning/generator has to be
proposed. Second, their methods assume that the human dancer will select one of the steps in the
predefined ballroom dance (i.e., waltz) step transitions in the step prediction. Since different types of
dance have different step transitions, this assumption limits the method to work with a specific type
of dance. On the other hand, our framework is designed to handle different kind of motions.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 3, Article 21, Publication date: June 2013.
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Fig. 2. Overview of the proposed framework.

2.2.2 Fighting Robots. Other than dance partner robots, the Nakamura laboratory [Nakamura and
Yamane Laboratory 2005] studied automating their high-mobility robot [Sugihara et al. 2005] to fight
and interact with a human [Lee et al. 2009]. In these previous works, the movement of the player
is captured by a motion capture system at runtime. The mimesis loop which is based on an HMM is
then applied for recognizing the behavior of the user by analyzing the live captured motions. Next,
the self-behavior, which is the behavior of the robot, is generated based on the learned interaction
patterns [Inamura et al. 2004]. Finally, the motion corresponding to the self-behavior for controlling
the humanoid robot is corrected into physically valid motion in real time [Sugihara and Nakamura
2005].

While it is expected that the robot can intelligently interact with the human by using the methods
proposed in Nakamura and Yamane Laboratory [2005], it is difficult to apply their method for handling
close interactions such as those in partner dancing. When synthesizing fighting interactions, body
contacts caused by punching and kicking can easily be maintained by enforcing contact constraints in
their method. However, close interactions such as tangling the limbs without body contact in dancing
and dodging in fighting cannot be handled due to the lack of representation of the spatial relationships
in the motion editing process. As a result, the context of the interaction will be lost. On the other hand,
our method can handle different kinds of close interactions by encoding spatial relationships (both
contacting and noncontacting body parts) extracted from the reference motion data.

3. METHODOLOGY

3.1 Overview

The overview of the proposed framework is shown in Figure 2. First, a motion library is constructed
using paired motions with two subjects who are closely interacting with each other (Section 3.2) in the
preprocessing stage. During runtime, the live captured pose of the user is used as query to retrieve a
pair of poses from the motion library (Section 3.3) for synthesizing the movement of the virtual partner.
Next, the selected pose pair is edited by the interaction mesh according to the live captured pose while
maintaining the context of the interaction (Section 3.4). Finally, the edited poses are rendered on the
screen as feedback to the user.

3.2 Motion Library

The motion library in our proposed framework contains motions captured from two closely interacting
subjects. Each motion is represented by a sequence of poses and each pose q is represented by a vector
of parameters, q = {q1, . . . , qn}, where qi is a 3D vector which contains the world coordinates of the ith

joint and 1 ≤ i ≤ n, and n is the total number of joints of the virtual character. In our motion library,
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 3, Article 21, Publication date: June 2013.
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the virtual character has 25 joints and the dimensionality of q is 75. Each frame carries two poses of
two subjects A and B, and each subject takes one of the two roles; the active role RoleA and the passive
role RoleS. While the subjects may switch roles throughout the motion sequence (e.g., subjects take
turns to attack/lead each other), we assume that only one of the subjects, takes RoleA and the other
one will be followed/respond passively in each frame.

3.2.1 Poses Normalization. In order to facilitate the motion selection process, the root translations
and rotation about the vertical axis should be ignored [Lee et al. 2002; Arikan et al. 2003; Kovar and
Gleicher 2004]. However, we cannot simply normalize the poses in each pair separately as the relative
distance and orientation between the two subjects have to be maintained in order to preserve the
context of the interaction. For this reason, we first convert the locations of all joints from the world
coordinates to the local coordinates of the character in RoleA in each pose pair. More specifically, given
a pair of poses, qA and qS, of the characters in RoleA and RoleS, respectively, we represent the locations
of all the joints by the relative positions from the root of character in RoleA to the joints. The final step
in the coordinate system conversion is to remove the rotation about the vertical axis applied to the
characters, which is usually represented by the orientation of the root joint. Since we know the rotation
about the vertical axis applied to the root of the character in RoleA, we can compute the corresponding
3×3 transformation matrix RMroot

A and cancel out the rotation by multiplying (RMroot
A )−1 to the relative

positions. After canceling out the root translation and rotation about the vertical axis, the normalized
poses can be compared directly.

In summary, the normalized poses pA and pS are computed by the following equations.

pA =

⎡
⎢⎢⎣

(
RMroot

A

)−1

...(
RMroot

A

)−1

⎤
⎥⎥⎦ ∗

⎛
⎜⎜⎝

⎡
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q1
A
...
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A

⎤
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⎡
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qroot
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⎞
⎟⎟⎠ (1)
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(
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A

)−1

...(
RMroot

A

)−1

⎤
⎥⎥⎦ ∗

⎛
⎜⎜⎝

⎡
⎢⎢⎣
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S
...

qn
S

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

qroot
A
...

qroot
A

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (2)

Here qi
A and qi

S are the position of the ith joint in poses qA and qS in the prerecorded motion, respectively,
qroot

A is the position of the root joint in pose qA, and pA and pS are the normalized poses of the characters
in RoleA and RoleS in local coordinates, respectively. Note that pA and pS have the same dimensionality
(i.e., 75 in our implementation) as the poses qA and qS in the database.

Since we do not have the information on which subject (A or B) took RoleA in the prerecorded pose
pair, our system converts each pair of prerecorded pose into two pairs of normalized poses: one pair is
normalized by assuming subject A takes RoleA and the other pair assumes subject B takes RoleA. As a
result, the size of the motion library is doubled in our implementation. If the roles of the subjects are
annotated in the captured motion, we can normalize the pose pairs accordingly without increasing the
size of the database.

3.2.2 kd-Tree Indexing. In order to efficiently retrieve similar poses from the motion library, a
kd-tree index structure has been used in our proposed method. The kd-tree search structure scales
well to large unstructured databases such as those containing over one million poses [Krüger et al.
2010]. As a result, it can greatly improve the performance of our motion selection process (Section 3.3)
and enables our method to be used for real-time interactive applications. To further improve the perfor-
mance, we defined a 15-dimensional feature set for comparison as in Krüger et al. [2010]. Specifically,
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 3, Article 21, Publication date: June 2013.
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the 15 features are the 3D locations of 5 joints (end-effectors): head, right hand, left hand, right foot,
and left foot in pA and we build the kd-tree by using this feature set. In our experiments, only a few
seconds are required for creating the kd-tree on a laptop computer and it was done in the preprocessing
stage.

3.3 Motion Selection

Now we explain the motion selection process using the live captured motion as query. Specifically, the
selection process is divided into two stages.

(1) Select the k-nearest neighbors K from the motion library.
(2) Select the best matched pair of poses based on the:

(a) Euclidean distance between the poses of the character in RoleA in K and the live captured pose
of the user, and

(b) temporal coherence between the candidate pose pair and the synthesized motion in the previous
frames.

3.3.1 Query Pose. The live captured pose qin of the user is taken as the query for retrieving a similar
pose pair for motion synthesis. By this, we simulate the situation in which the user takes RoleA and
the virtual avatar takes RoleS. However, we cannot directly compare the poses in the motion library
with qin. It is because the sizes/lengths of the body segments of the user are not necessarily the same
as the subjects who performed the motions in the database. To solve this problem, we first retarget qin
to q′

in which has the same body structure as the subject who takes RoleA in the database.
Here, we retarget qin to q′

in using an approach similar to the motion retargetting proposed by Gleicher
[1998]. Specifically, we retarget the live captured motion to the body structure used in our database by
Inverse Kinematics (IK). Similar to Gleicher [1998], the foot planting constraints are enforced to pre-
serve the stepping pattern in the original motion. We also constrain the positions of the end-effectors
on the upper body (i.e., head, left hand, and right hand) when solving the IK problem to preserve
the upper body movement of the user in the motion retargetting process. Finally, the retargetted pose
q′

in is converted into local coordinates p′
in by multiplying the inverse of the rotation of the root joint

(RMroot
in )−1 in q′

in to the relative positions computed from the root joint q′root
in to all joints. This process

is similar to the pose normalization explained in Section 3.2.1. Since the root translation and rotation
are removed in the normalized pose, we can directly compare p′

in with the normalized poses in the
database.

3.3.2 Selecting the k-Nearest Neighbors from the Motion Library. Next, we select the 10-nearest-
neighbors K from the motion database using the 15-dimensional feature set extracted from p′

in. In
our experiments, we searched for the k-nearest neighbors by using the ANN library [Mount and Arya
2006]. As accurately retrieving the poses is very important in our framework, we validate the selection
of k and the dimensionality of the feature set by the performance evaluation in Section 4.1.

3.3.3 Selecting the Best Matched Pair of Poses. Now we compare p′
in to all of the corresponding

poses of the active role in K. Here, we used the point-cloud distance metric [Kovar et al. 2002] for
comparing the similarity of the poses. We also consider the temporal coherence of the synthesized
motion by taking into account the poses generated in previous frame {sA,i−1, sS,i−1}, where i is the
index of the frame being synthesized. Since sudden change of moving direction of body segment can
easily result in visually discontinuous motions, the accelerations of the joints in the desired poses of
the characters in consecutive frames should not be large. Based on this assumption, the desired poses
are computed by the velocities of the synthesized poses in the previous frame. Here we estimate the
poses of character in RoleA and RoleS at the frame being edited as {sA,i∗ , sS,i∗ } by using the velocities of
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{sA,i−1, sS,i−1}
sA,i∗ = ṡA,i−1�t + sA,i−1, (3)
sS,i∗ = ṡS,i−1�t + sS,i−1, (4)

where ṡA,i−1 and ṡS,i−1 are the velocities of the joints of the characters in RoleA and RoleS in the previous
frame, respectively, and �t is the step size which is 1/15s in the experiments. In order to bias the pose
searching process to the desired pose, we introduced a term in the cost function (Eq. (7)) to measure the
Euclidean distance between the desired pose {sA,i∗, sS,i∗ } and the poses in K. However, the poses in K
cannot be compared to {sA,i∗ , sS,i∗ } directly as the poses are represented in different coordinate systems.
For this reason, the poses in K will be converted into world coordinates for computing the Euclidean
distance. In particular, the rotation RMroot

in of the root joint in q′
in will be used in the conversion since

the synthesized postures should have the same orientation as in q′
in captured from the user. We have

q′′
A, j =

⎡
⎢⎢⎣

RMroot
in

...
RMroot

in

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

p1
A, j
...

pn
A, j

⎤
⎥⎥⎦ , (5)

q′′
S, j =

⎡
⎢⎢⎣

RMroot
in

...
RMroot

in

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

p1
S, j
...

pn
S, j

⎤
⎥⎥⎦ , (6)

where q′′
A, j and q′′

S, j are poses in world coordinates converted from the jth pair of poses (i.e., pA, j and
pS, j) in K, and 1 ≤ j ≤ k. To balance the trade-off between being responsive to the user (i.e., closely
following the live captured motion) and producing smooth and continuous motion (i.e., with small
acceleration between consecutive frames), weights are introduced in the cost function in Eq. (7). As a
result, the cost function becomes

dist(p′
in, {sA,i∗ , sS,i∗ }, pA, j, {q′′

A, j, q′′
S, j}) =

n∑
l=1

[(
p′l

in − pl
A, j

)2 + α
((

sl
A,i∗ − q

′′l
A, j

)2 + (
sl

S,i∗ − q
′′l
S, j

)2)]
, (7)

where α is the weight for temporal smoothness and is set to 0.5 in our experiments, l is the index of the
joint, n is the total number of joints of each character, which is standardized in the motion database.

We select the pose pair with smallest weighted sum of Euclidean distance returned from the cost
function (Eq. (7)) for the motion synthesis process. In particular, the selected pose pair in world coor-
dinates will be edited according to q′

in and the details will be explained in next section. In the rest of
this article, the selected poses will be represented by {q′′

A,sel, q′′
S,sel}.

3.4 Motion Synthesis

Since the pose of the character in active role q′′
A,sel in the selected pose pair should be similar to, but

not necessarily the same as, the pose captured from the user q′
in, it is possible that the synthesized

motion is different from the performance of the user if the selected pose pair is not edited accordingly.
To maintain the consistency between the movement of the user and the synthesized motion, the pose
of the character in active role q′′

A,sel will be morphed to the pose of the user q′
in. In order to preserve the

context of the motion, we apply the interaction mesh motion adaptation method proposed by Ho et al.
[2010] to edit the selected poses {q′′

A,sel, q′′
S,sel}. An example is shown in Figure 3(a)–(d). In the rest of

this section, we will explain how we adopt the proposed framework in Ho et al. [2010] to our method.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 3, Article 21, Publication date: June 2013.



Interactive Partner Control in Close Interactions for Real-Time Applications • 21:9

Fig. 3. (a)–(d) The selected poses are edited by the interaction mesh motion adaptation framework [Ho et al. 2010]. (a)
The posture of the user; (b) the posture of the user (purple), selected leader pose (yellow), and selected follower pose (red),
(c) intermediate poses edited by interaction mesh; (d) final poses of the leader and follower; (e)–(f) an example of interaction
mesh extracted from a pair of salsa dance poses; (e) the original postures; (f) the interaction mesh extracted from the poses.
Dance motion data used in creating these figures are obtained from the CMU Motion of Body (MoBo) Database [Gross and Shi
2001].

3.4.1 Interaction Mesh Preparation. For each pair of poses in the motion library, a corresponding
interaction mesh will be computed in the preprocessing stage (offline). Interaction mesh [Ho et al.
2010] is a volumetric mesh composed of vertices and edges. The vertices are the locations of joints and
points sampled from the surface of the characters and objects in the virtual environment. The structure
of the interaction mesh is then constructed using edges computed by Delaunay tetrahedralization of
the point cloud (i.e., the vertices). By performing Delaunay tetrahedralization, the vertices which are
close to each other tend to be connected by edges. As a result, the vertices sampled from the closely
interacting body parts and objects are connected in the interaction mesh. By minimizing the distortion
of the interaction mesh while editing the poses, the spatial relationships can be preserved.

In this research, we focus on interactions between characters only. We apply the Delaunay tetrahe-
dralization [Si and Grtner 2005] to the point cloud that contains the locations of the joints sampled
from the two characters in each pair of pose. An example of the interaction mesh extracted from a pair
of salsa dance poses in our motion database is shown in Figure 3(e)–(f).

3.4.2 Editing the Poses. Now we present the method for editing the selected poses {q′′
A,sel, q′′

S,sel}.
Our goal is to edit the selected poses q′′

A,sel to be as similar to the live captured pose q′
in as possible

while preserving the context in the pose pair {q′′
A,sel, q′′

S,sel}. In addition, the edited poses should also be
similar to the synthesized poses in the previous frame {sA,i−1, sS,i−1} to maintain the temporal coher-
ence and reduce jaggy jumps between consecutive frames. We formulate this motion edit process as an
optimization problem and the details are explained as follows.

—Notations. Let m be the number of vertices in the interaction mesh, vi
j(1 ≤ j ≤ m) be the vertices at

frame i, Vi be a vector of size 3m that includes all vi
j such that Vi = (vi

1
T
, . . . , vi

m
T), and vi

j
′ and V ′

i be
the updated vectors after motion editing.

—Energy Functions. As in Ho et al. [2010], the following energy functions are used in our method,
namely deformation energy EL(V ′

i ), velocity energy EV (V ′
i , V ′

i−1), and constraint energy EC(V ′
i ). Min-

imizing the deformation energy can minimize the distortion of the interaction mesh. As a result,
the spatial relationships of the characters can be preserved. In order to maintain the smoothness
and continuity of the motion, the velocity energy is also minimized. Finally, the soft constraints are
formulated as constraint energy.
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—Constraints. Here we explain the constraints enforced in the spacetime optimization. In particular,
we use the bone-length constraints CB(V ′

i ), morphing constraints CM(Vi
′), and collision constraints

CC(V ′
i ) proposed in Ho et al. [2010]. We further introduce the antifoot-sliding constraints CF(V ′

i ) in
our method. The details of each constraint are explained next.

Bone-length constraints are used for maintaining the distance between adjacent joints of characters
as the body segments are rigid. In order to prevent penetration between the bounding volumes of the
body segments, collision constraints are enforced and the colliding body segments will be moved apart.

Morphing constraints. In this research, the selected pose q′′
A,sel will be gradually morphed to q′

in such
that the synthesized pose of the character in RoleA will be similar to the pose of the user. At every
morph-step, which will be further explained shortly, an intermediate target pose qinterpolated is linearly
interpolated by the following equation

qinterpolated = i
m

(q′
in − q′′

A,sel) + q′′
A,sel, (8)

where m is the total number of morph-steps and i is the index of the current morph-step. Next, the
morphing constraints are updated using qinterpolated as the target pose

CM(V ′
i ) = qinterpolated − V ′

A,i, (9)

where V ′
A,i contains the positions of the vertices sampled from the currently editing pose of the char-

acter in RoleA.
Antifoot-sliding constraints. In order to avoid artifacts such as foot-sliding appearing in the syn-

thesized motion, we further introduce an additional constraint to fix the position(s) of the supporting
foot/feet on the ground. First, the system detects whether a foot is landed on the ground by checking
the height of the foot (i.e., the y-position in world coordinates). If the foot is detected as landed, the
system will further check the landing status of the foot in the previous frame. In case that the foot was
landed in both of the previous and current frame, the antifoot-sliding constraint will be enforced. We
have

CF(V ′
i ) = V ′

f eet,i−1 − V ′
f eet,i, (10)

where V ′
f eet,i and V ′

f eet,i−1 are the positions of the vertices sampled from the joints on the landed
foot/feet in the current and previous frame, respectively.

Soft and hard constraints. In the proposed method, antifoot-sliding constraints are hard constraints.
Since maintaining the correct bone lengths and avoiding penetrations between body parts are impor-
tant, bone-length and collision constraints are also set as hard constraints. In order to prevent the
system from overconstraining, morphing constraints are set as soft constraints to stabilize the motion.

—Iterative Morphing. At every morph-step, the intermediate target pose qinterpolated and morphing con-
straints are updated using Eqs. (8) and (9), respectively. Finally, the poses of the characters are
adapted by minimizing the sum of the deformation, velocity, and constraint energy subject to the
hard constraints HiV ′

i = hi. The adapted motion is computed by solving

arg minV ′
i ,λi (1≤i≤n) EL + w�EV + EC + λT

i (HiV ′
i − hi), (11)

where V ′
i is the set of new vertex positions at the current frame, λi are the Lagrange multipliers

and w� is a constant weight (we use 0.2). The optimization problem in Eq. (11) can be solved by
differentiating it with respect to V ′

i and λi, and solving a system of linear equations. The reader is
referred to Ho et al. [2010] for further details.
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Table I. Accuracy of Pose Selection by Searching Method MA

Size of nearest-neighbor search Best pose found Either of the best 2 poses found Time required (ms)

5 92.85% 95.73% 13.8

10 95.07% 97.73% 14.9

15 96.54% 98.75% 15.8

20 97.87% 98.98% 17.0

25 98.09% 98.98% 18.0

30 98.75% 99.20% 19.9

35 98.75% 99.20% 21.5

40 98.75% 99.20% 23.1

45 99.20% 99.42% 24.9

50 99.20% 99.42% 26.7

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method with five experiments. The experiments were con-
ducted on a desktop computer with Intel Core 2 Duo 2.4 GHz processor for motion synthesis and the
Motion Analysis Eagle Digital optical motion capture system for acquiring the motion of the user. Our
motion library contains the salsa dance motion data from the CMU Motion of Body (MoBo) Database
[Gross and Shi 2001] and fighting motion data synthesized by the method proposed in Shum et al.
[2007]. There are 15464 frames of dance motions and 13740 frames of fighting motions captured at a
frame rate of 60 Hz. For solving the linear equations stated in Section 3.4.2, UMFPACK [Davis 2004]
and GotoBLAS [Goto and Van De Geijn 2008] were used.

4.1 Performance Evaluation on Motion Selection

In the first experiment, we compared the performance of our proposed method with a brute-force
method. The purpose of this experiment is to evaluate the effectiveness of the reference poses se-
lection process using the proposed nearest-neighbor search and the 15-dimensional feature sets for
the poses. We randomly chose 1000 dancing and fighting poses from the motions captured from novice
users, which are different from those captured from professional dancers and fighters in the motion
database, as queries for pose pair selection. For each query, we compared the results returned by two
searching methods: (MA) the 10-nearest-neighbors search using the 15-dimensional feature set, and
(MB) brute-force search which sequentially searches all the poses in the motion library and compare
the poses using Eq. (7). The computation time required by the search algorithms and accuracy of the
retrieved poses were compared and summarized in Table I.

Regarding the accuracy of our proposed method, the best matched pose found in MB is included in the
10-nearest neighbors returned by MA in 95.07% of the queries. While the best matched pose returned
by MB was not found in around 5% of the queries, we found that either of the best two matched poses re-
turned from MB can be found in the 10-nearest neighbors returned by MA in nearly 98% of the queries.

Increasing the size of the nearest-neighbor search and the dimensionality of the feature sets for the
poses can further improve the chance of including the best matched pose in the result set. However,
additional computation is required and we argue that the selection of the size of nearest-neighbor
search and the feature set should depend on the availability of computational resources. To balance
the interactive performance and the accuracy of the motion selection in our proposed framework, we
chose 10-nearest-neighbor search and the 15-dimensional feature set as in Krüger et al. [2010] for all
the experiments.
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Table II. Computation Time Required for the Two Searching
Methods MA and MB

Number of pose pairs in the motion database MA MB

7500 12.4ms 40.5ms

15000 13.6ms 77.0ms

30000 15.0ms 145.2ms

Fig. 4. Snapshots of our leave-one-out cross-validation experiment (salsa dance). The partner dance motion pair (yello: Leader,
purple: Follower) is removed from the motion database. The motion of the leader is used as user input motion. A virtual partner
(red) is synthesized accordingly. Dance motion data used in creating these figures are obtained from the CMU Motion of Body
(MoBo) Database [Gross and Shi 2001].

In addition, we also compared the average time in query required by the two searching methods and
the results are summarized in Table II. The computation costs show that the kd-tree indexing scales
well and enables efficient motion search in a large motion database. This is particularly important for
real-time interactive applications as the motion selection has to be done at every frame.

In summary, the results show that the selection of retrieving 10-nearest neighbors using the
15-dimensional feature set can obtain results which are close to the optimal results returned from
brute-force search while improving the performance of our method significantly.

4.2 Leave-One-Out Cross-Validation

In the second evaluation, we performed the leave-one-out cross-validation. The purpose of this exper-
iment is to focus on evaluating performance of our proposed framework while excluding the factors
affecting the quality of the synthesized motion caused by the performance of the user (e.g., errors in-
troduced by the skill level of the user). Here we removed a pair of salsa dance motion from the database
and use the motion of the leader as query. The snapshots of the synthesized dance motion are shown
in Figure 4. In Figure 4, the characters colored in yellow and purple were performing the captured mo-
tions of the leader and follower, respectively. The motion of the character colored in red is synthesized
by our method.

To quantitatively evaluate the effectiveness of our proposed method, we computed the success rate
of the salsa moves in the synthesized motion. Here, the success rate is computed by

Success Rate = Number of Successf ul Moves
T otal Number of Moves

. (12)
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Table III. Success Rates of the Synthesized Motions
Experiment Total moves Successful moves Success rate

Salsa Dance - Leave-one-out (expert) 27 26 96.30%

Salsa Dance - User A (beginner) 40 34 85.00%

Salsa Dance - User B (beginner) 31 26 83.87%

Fighting - Leave-one-out (expert) 26 24 92.31%

Fig. 5. Snapshots of our leave-one-out cross-validation experiment (salsa dance). Note that the synthesized dance partner (red)
rotated in a different direction comparing to the captured motion. Dance motion data used in creating these figures are obtained
from the CMU Motion of Body (MoBo) Database [Gross and Shi 2001].

We counted the number of successful moves by checking the labels of the synthesized move and
the corresponding move in the original motion. If the labels are the same, the synthesized move will
be classified as a successful move. We labeled and categorized the salsa moves in the database into
6 categories: Normal open holds, Normal closed holds, Leading a left/right turn, Cross body lead, Walks,
and In and Out. The results are summarized in Table III. The results show that 96.30% of the moves of
the virtual partner were successful moves. Since some of the moves in the captured motion pair are not
included in the database, the synthesized motion may differ visually from the original motions in some
of the moves as shown in Figure 5 and that explains why the success rate is not 100%. Nevertheless,
valid salsa moves were created and the experimental results show that smooth and continuous partner
dance animation can be synthesized by using our method.

4.3 Partner Dance Motion Synthesis

In the third experiment, we interactively synthesized a virtual dance partner by using live captured
dance motions of two novice users. Figures 6 and 7 show the screenshots of the dance performed by the
users (left) and the synthesized partner dance motions (right). The synthesized motions were rendered
and projected on to a large screen on the wall as a real-time visual feedback to the user (Figure 1).
As the motion can be synthesized at 15 frames per second, the user can interactively adjust his/her
performance to create the desired partner dance motion. The readers are referred to the attachment
video for the resulting motions.

Again, we quantitatively evaluated the effectiveness of our method by computing the success rate
of the synthesized motion. Specifically, we asked the user to mimic the basic salsa moves contained in
our motion database. First, the users studied the salsa moves by watching the animation created by
the salsa dance motions in the database. Next, the users tried to perform the salsa moves in random
order. Here, a successful move means that the synthesized partner (follower) moves in a way that the
user wants. The results are summarized in Table III. The results show that over 83% of the moves of
the partner can be synthesized correctly in all the experiments. For the failed moves, we found that
most of the moves performed by the users are not similar to the motions in the database. As the users
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Fig. 6. Synthesized partner dance motions (by User A). (left) Live capturing the dance motion of the user. (right) The synthe-
sized dance motions of the leader (red) and follower (blue). Dance motion data used in creating these figures are obtained from
the CMU Motion of Body (MoBo) Database [Gross and Shi 2001].

Fig. 7. Synthesized partner dance motions (by User B). (left) Live capturing the dance motion of the user. (right) The synthe-
sized dance motions of the leader (yellow) and follower (red). Dance motion data used in creating these figures are obtained from
the CMU Motion of Body (MoBo) Database [Gross and Shi 2001].

participating in this experiment are beginners, we expect that experienced salsa dancers can achieve
a higher success rate which can be comparable to the results obtained in the leave-one-out experiment
in Section 4.2.

4.4 Fighting Motion Synthesis

In the last experiment, we interactively synthesized fighting motions using the proposed method. This
experiment is to show that our method is applicable for a wider range of multicharacter interactions.
Both attacking (e.g., punching, kicking, etc.) and defending moves (e.g., dodging, blocking, etc.) are
included in our motion library. We extracted a sequence of 1000 frames from the collected motions
and use it as the input for motion synthesis, which is similar to the leave-one-out cross-validation
explained in Section 4.2. The results are shown in Figure 8. Note that the synthesized opponent reacts
to the input motion accordingly. When the character controlled by the input motion (Figure 8 yellow)
attacks, the synthesized opponent (Figure 8 red) defends, and vice versa. The readers are referred to
the attachment video for the resulting motions.
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Fig. 8. Synthesized fighting motion. The synthesized opponent (red) reacts to the input motion (yellow) accordingly. Fighting
motion data used in creating these figures are synthesized by the method proposed in Shum et al. [2007].

We also performed the quantitative evaluation explained in Section 4.2 on the synthesized fighting
motion. We labeled and categorized the fighting moves into four categories: kicking, punching, dodging,
and blocking. The results are summarized in Table III. From the results, 92.31% of the moves of the
virtual opponent were successful moves. While there are a small number of failed moves, continuous
and smooth fighting interactions were synthesized.

Through this experiment, we demonstrated that our proposed method is general and able to handle
different kinds of close interactions. In particular, the user can perform both offensive and defensive
moves to lead the virtual partner to launch appropriate movements, either attacks or defenses, ac-
cordingly. When comparing with the experiments in previous sections, the body contacts involved in
partner dancing and fighting are different. In partner dancing, there are a lot of body contacts between
the characters. But for fighting interactions, such as the dodging (avoiding) motions, there can be no
body contact between the characters. It is difficult to apply traditional motion editing techniques to
handle these cases as we cannot enforce contact constraints for preserving the context of the inter-
action. On the other hand, our proposed method applies spatial relationships for synthesizing close
interactions which can handle interactions with and without body contacts.

4.5 Evaluating the Naturalness of the Synthesized Motion

We further carried out an experiment to qualitatively evaluate the naturalness of the motion synthe-
sized by our proposed method. In particular, the motion is evaluated by the Zero Moment Point (ZMP)
error metric [Ikemoto et al. 2007] which computes the distance between the ZMP and the support poly-
gon if the ZMP is outside the support polygon. Since there is no guideline for a good threshold value to
decide whether a motion is natural or not from the ZMP error, we compare the ZMP errors between the
synthesized dancing and fighting motions in the leave-one-out tests (Section 4.2 and 4.4) and the cor-
responding original motions. The results are listed in Table IV. The very similar ZMP errors computed
from the motions indicate that the motions synthesized by our proposed method should be as natural
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Table IV. Average Zero Moment Point (ZMP) Error
Distances (per frame) Computed from the Dancing

and Fighting Motions
Motion type Original motion Synthesized motion

Salsa Dance 0.70 0.72

Fighting 2.24 2.21

as the original motions. As our method enforces antifoot-sliding constraints to handle the foot-sliding
problem, the foot-sliding metric proposed in Ikemoto et al. [2007] is not used in this evaluation.

In summary, the experimental results show that the proposed method successfully synthesized
smooth and continuous motion of the virtual partner responding to the character controlled by the
live captured motion of the user in close interactions such as dancing and fighting. For partner dance,
we tested our method by users with different skill levels: the motions of professional salsa dancers
(i.e., from the CMU motion database [Gross and Shi 2001]) in the leave-one-out cross-validation in
Section 4.2, as well as the beginners in Section 4.3. The proposed framework can be applied to inter-
active applications such as computer games and virtual dance learning systems for users at any skill
level. Finally, we further tested our method with fighting motions to show that our method is general
and able to handle different kinds of multicharacter close interactions.

5. DISCUSSION

In this section, we will discuss some of the assumptions and limitations in the motion selection process
and the construction of the motion database in the proposed method. First of all, we assume that the
user takes RoleA in the interaction. Nevertheless, it is also possible to use the live captured motion of
the user as RoleS and synthesize the motion of the virtual partner in RoleA accordingly. Switching be-
tween the roles is another interesting approach and it can enhance the user’s experience. For example,
in the fighting motions synthesis experiment in Section 4.4, switching RoleA (i.e., attacking in fight-
ing) between the characters is more reasonable and realistic. However, for partner dance applications,
letting the user take RoleA enables a higher level of control and the user can direct how the partner
dance motion sequence will be synthesized. To conclude, the design of the role switching scheme is
application dependent. For motion synthesis, treating the user input motion in RoleA increases the
controllability of the results. On the other hand, switching the roles between the user-controlled char-
acter and the virtual partner/opponent can enhance the user’s experience, which is more suitable for
applications such as interactive learning and computer games.

Next, we explain the decision on selecting a single pair of motion from the database for reference. In
character animation, it is common to create new motion by interpolating multiple motion sequences in
the motion database. By this, we can reduce the size of the motion database by generating new motions
at runtime. However, such an approach is difficult to apply on synthesizing close interactions because
artifacts such as interpenetrations of the body segments are likely present in the synthesized motions.
Taking into account the spatial relations of the body parts of the characters when selecting candidate
poses for interpolation [Ho and Komura 2009b] can be one of the solutions. Interpolating the postures
by nonlinear methods such as SGPLVM [Grochow et al. 2004] is another interesting future direction.

Finally, we discuss the selection of close interactions for making up the database. In the experiments,
our motion database contains a single type of fighting and partner dance (i.e., the salsa) motions. A
broader range of motions can be synthesized by adding different kinds of close interactions to the mo-
tion library. Given the complexities of O(n log n) for kd-tree construction and O(k log n) for k-nearest-
neighbors search where n is the number of pose pairs in the database, the proposed method scales well
to the size of motion database. We believe that increasing the size of the motion library does not have
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significant impact on the performance of our proposed method. Another potential problem arising from
the increase in number of motions in the database is the ambiguity in selecting the reference pose pairs
from similar moves for motion synthesis. Specifically, when there are two or more pose pairs having
the pose of the character in RoleA which is similar to the live captured pose of the user, any of the pose
pairs can be selected and thus the user will have less control on the resultant interaction. Since our
method only takes into account the live captured pose and the previously generated pose for reference
motion selection, additional information has to be given to our method in such an ambiguous case.
For example, the user can give feedback to our system to specify which pose or action he/she wants
when similar pose pairs are found. An interesting future direction will be automating the process to
remove ambiguity by recognizing and analyzing the movements of the user in the action level over
time for predicting the intention of the user in the future for selecting the appropriate reference pose
pair. Techniques such as “motion symbol tree” and “motion symbol graph” proposed in Takano et al.
[2011] for recognizing and predicting human behaviors from observation will be explored.

6. CONCLUSION AND FUTURE WORK

In this article, we proposed a framework for synthesizing a motion of a computer-controlled character
in response to the user-controlled character during close interactions in real time. We implemented
an interactive system based on the proposed method which enables the user to control the motion of
the virtual partner intuitively and interactively. Experimental results showed that realistic partner
motions in dancing and fighting can be generated in real time.

The proposed method can be applied to a wide variety of applications such as interactive computer
games, character animation, virtual dance learning systems [Magnenat-Thalmann et al. 2008; Chan
et al. 2011], etc. By extending our method to take into account the physical limitations of the charac-
ters, it is possible to synthesize motions for controlling humanoid robots to closely interact with hu-
mans with body contact. In addition, we plan to produce a dancing system that can manage different
types of dances as a future research direction.
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