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Abstract Fluid dynamics can produce realistic looking fire
effects, which are heavily used in animation and films. How-
ever, the parameters of the various underlying physical equa-
tions are not intuitive enough to be controlled easily. As a
result, animators face problems when editing the fine details
of the fire, especially the turbulence and growth at the fire
surface. In this paper, we propose a new approach to en-
able animators to interactively edit such fine details using
textured forces. These techniques involve mapping a texture
onto the simulation that controls the creation of new forces,
growing the fire into specific shape and adding the natural
turbulence of fuel ignition. These textures can be edited us-
ing an intuitive user interface that allows forces to be painted
directly onto the fire. Our system can be integrated into ex-
isting GPU fluid solvers to run in real-time. As a result, it is
applicable for interactive applications such as 3D computer
games.

Keywords Fire animation · Fluid simulation

1 Introduction

Fire effects based on fluid dynamics have been used in mo-
tion pictures and video games to captivate the audience and
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make the experience more immersive. Particle systems in
particular are straightforward to visualise and understand
but lack the correct physical motion that appears in real fire.
Fluid simulation holds the key to the correct simulation of
fire. Although the computational cost of simulation is fairly
high, recent approaches for parallelising fluid simulation us-
ing the graphics processing unit (GPU) have enabled real-
time animation on consumer level personal computers.

Getting the correct appearance for the fire normally re-
quires careful control of the various parameters of the un-
derlying physical equations. These parameters are neither
intuitive nor straightforward to understand. It is especially
difficult for the artists to create fire effects with a particular
shape and turbulence. The main source of turbulence that
occurs inside the flame is due to the pressure caused when
fuel ignites and occurs on the interface between the fuel and
the burning flames.

This paper presents a new method of controlling the
shape of fire that is suited to both simple fire effects and
more dynamic simulations with fully controllable shapes.
A 2D or 3D texture mapped onto the simulation controls
the strength of additional forces which control the growth of
the flame and add artificial turbulence. This allows for easy
control of the fire through textures that can be procedurally
generated or created by an artist. Moreover, these textures
can be adapted frame-by-frame to animate fire into different
controllable shapes while maintaining the visually pleasing
turbulence caused by burning fuel.

This method can be executed entirely on the GPU in real-
time, including simulation, rendering and interaction stages.
Using NVIDIA’s CUDA frees the CPU to manage other
parts of the animation process making it ideal for both video
games and fast animation tools for visual effects. Through-
out the paper, we show various types of fire that can be pro-
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duced and simulated interactively by simply changing the
texture pattern applied to the simulation.

1.1 Previous work

Fires have been simulated by particle systems [24, 25, 30,
31], cellular automata [4], flame primitives [2], and fluid dy-
namics [22]. Methods based on particle systems and cellular
automata have advantages given their simple methods for
controlling the fire. However, the resulting animation fails
to produce realistic results, especially the volumetric effect
of actual flames. Methods based on flame primitives have
difficulties in simulating the real turbulence inherent in fire.

Fire simulation is a subset of the larger fluid dynamics
research area. Recent advances in fluid simulations [28, 29]
have enabled realistic fire animations. The burning flame can
be treated as an incompressible fluid, and is thereby gov-
erned by the incompressible Navier–Stokes equations.

Nguyen et al. [22] utilises a surface-tracking system that
tracks the barrier between the burning flames and the fuel
and calculates the velocities of these two systems indepen-
dently. Hong et al. [13] make use of detonation shock dy-
namics to produce features such as cellular patterns that ap-
pear as visually distinct patterns in the fire. These method-
ologies simulate effects such as ignition turbulence by track-
ing the interface of the reaction zone where fuel igni-
tion occurs. These techniques are categorised as the two-
phase approach, in comparison to the classic one-phase ap-
proach [11] that does not separate the models of the unburnt
fuel and the burning fire. The two-phase approach involves
numerous physical parameters which are not intuitive and
difficult to control. In addition to that, they require a signif-
icant amount of memory and computation, and thus it is not
easy to evaluate the results in real-time.

Controllable fluids have been an active research area
in the last few years. Foster and Metaxas [10] propose a
method of high-level control of fluid simulation. Foster and
Fedkiw [9] suggest a method by constraining the velocity
field at some locations. Treuille et al. [33] use a keyframe
method to control the fluid animation. McNamara et al. [20]
accelerates this method by the adjoint method. Fattal and
Lischinski [7] add a driving force that attracts the fluid to
a specific target and a gathering term that prevents them
from diffusing to control the shape of fluids. The method
by Shi and Yu [27] adds velocity at the boundary of the tar-
get shape. Lamorlette and Foster [18] share a similar goal of
making easily controllable but also visually appealing fire,
but focuses on a stochastic model based on Kolmogorov
noise.

Although these methods are suitable for controlling the
global shape or flow of the fluid, a significant challenge in-
volves controlling the local details such as the turbulence
and flame growth using a simple and understandable inter-
face which is the main focus this paper. Our approach aims

to create fire effects with visually appealing textures effects
similar to [13] without the large computational cost.

Many have looked at how artificial noise can be added to
a simulation. Vorticity confinement in [8] shows a method
of reintroducing lost turbulence into the simulation. Wavelet
noise was used in [16] and procedural turbulence in [21]
to calculate subgrid details of a simulation. Schechter and
Bridson [26] also develops plausible turbulence that is added
on top of the existing simulation. These papers focus on in-
creasing the visible quality of fluid simulations while our use
of procedural noise differs in that it is the main force emu-
lating the fire movement. These techniques could be used
in conjunction with our fire model although would decrease
the performance of the real-time system.

Fast and stable fluid simulation techniques are imple-
mented on the GPU [12] to animate fluids such as smoke,
fire and liquid in real-time. We take a similar approach to [5]
in order to solve the fluid equations in real-time. Crane et
al. [5] examine how the fluid solver can be executed in real-
time using various GPU optimisations to simulate a 3D do-
main and look at techniques for rendering the 3D simulation
domain using GPU volume rendering. Horvath and Geiger
[14] examine how the GPU can be used for fire effects based
on a particle system and integrated into a production envi-
ronment.

1.2 Our approach

In order to achieve real-time simulation and user interac-
tion with the fire, we utilise a classic one-phase fluid ap-
proach [11], which requires less memory and computation
and through our methods can be controlled very easily. Once
the isosurface of the fire is found, we synthesise realistic
fires by adding trigonometric forces at the interface. The an-
imator has access to the fine details of the fire shape through
the force texture and the intuitive painting interface pro-
vided. Figure 1 outlines an example of using textures to con-
trol the shape with added artificial turbulence.

1.3 Contribution

• A simple method to control the turbulence and shape of a
fire based on forces created by a texture pattern

• An intuitive method to interact with the shape of the fire
using a paintable isosurface, and hence control the inter-
nal forces

• These techniques can be executed in real-time on the GPU
and carry significantly low computational and memory
cost

2 Overview

In our approach, a uniform 3D grid is used to define the tem-
perature field of the fuel and an equally sized vector field is
used to define the velocity of the fluid. We first track the fuel
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Fig. 1 This shows a basic
process of applying a 2D dotted
texture (at top-left) to the
normal forces only (at top) with
a simple sine-based noise force
(at bottom) and combining them
(at right)

isosurface in the temperature field outlined in Sect. 3. Next,
forces based on the physical instability and additional user
input are computed and added into the domain. These addi-
tional forces depend on a 2D or 3D force texture outlined in
Sect. 4. A simple user interface discussed in Sect. 5 allows
the user to adjust the textures and hence the shape of the fire.
Once all the external forces are computed, they are used to
update the velocity and temperature field using an incom-
pressible Navier–Stokes solver (Sect. 6). We briefly explain
the method of parallelisation in Sect. 7 which allows the an-
imation to execute in real-time, and show the experimental
results in Sect. 8. The advantages of this approach are inves-
tigated in Sect. 9.

3 Fire isosurface

When simulating fire, finding the interface between the fuel
and the ignited fire is important to create realistic anima-
tion. The chemical reaction of the fuel ignition adds exter-
nal forces to the fluid due to pressure changes. In addition to
this, the discontinuity of the fuel at the two sides causes in-
stability resulting in turbulence. Our approach artificially de-
fines an isosurface inside the fire and adds appropriate forces
at this surface.

This isosurface is also key to how the animator interacts
with the fire as they can apply a texture to the isosurface or
paint onto the isosurface that then directly affects the addi-
tional forces added to the fire.

3.1 Isosurface definition

A level-set function is an often used technique to track a fire
isosurface [22], where the scalar value at each grid point is
the distance to the isosurface. However, animating a level-
set function correctly is costly and requires additional mem-

ory storage. Instead the temperature field is used to de-
fine the isosurface at a predefined scalar value such that
temp(x, y, z) = tignition, affectively defining an isothermal
contour in the temperature field. The resulting surface is out-
lined in Fig. 2. By using lower values of tignition the boundary
is closer to the visual edge of the fire. tignition would depend
on the type of fuel being simulated and on the temperature
of the source added to the simulation.

Each grid cell is examined to see whether it is intersected
by the isosurface, similar in concept to the marching cubes
algorithm [19]. This is achieved by comparing the values of
the neighbouring cells to see if they fall on the other side
of the isosurface. By using the preexisting temperature field,
no additional memory storage is required to track the igni-
tion boundary. Additional normal and noise forces are then
added to the simulation dependent on the isosurface. The
results of these forces are illustrated in Fig. 1.

3.2 Normal force

The normal force controls the growth of the fire and simu-
lates the physical effect of igniting fuel pushing the flame
outward. It can also be used to pull the fire in to emphasize
specific shapes. Given a cell at the position (i, j, k) on the
isosurface, the normal of isosurface can be approximated us-
ing the discrete gradient of the temperature field at that point
as shown below.

grad(i, j, k) =
⎛
⎜⎝

Fi+1,j,k−Fi−1,j,k

2
Fi,j+1,k−Fi,j−1,k

2
Fi,j,k+1−Fi,j,k−1

2

⎞
⎟⎠

fnormal(i, j, k) = − grad(i,j,k)

‖grad(i,j,k)‖
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Fig. 2 A simulated fire and the interfaces defined at 0.5 (middle-left),
1.0 (middle-right), and 1.5 (right)

As the gradient points toward higher temperature, and to-
ward the source of the fire, the normal force is defined as
the negative of the normalised gradient for that point. This
simulates the expansion of the fire due to ignition and is a
powerful tool in shaping the fire.

3.3 Noise force

In order to add more additional turbulence and reduce the
likelihood of the simulation reaching stable equilibrium, ve-
locity created using procedurally generated noise is added
to the cells on the isosurface. Various noise functions could
be used to create a variety of effects. Sinusoidal noise varies
smoothly creating nicely flickering flames, making it very
controllable. The noise function shown below depends on
the 3D position (i, j, k) of the isosurface cell and the cur-
rent frame number t .

fsine noise(i, j, k) =
⎛
⎝

sin(ij + t)

cos(jk + t)

sin(ik + t)

⎞
⎠

The function can easily be adapted for different require-
ments of turbulence. By changing the frequency of the
trigonometric function, faster and more tightly packed tur-
bulence will be created.

A basic sine/cosine function can become visually peri-
odic, particularly if no other forces act on the fire for a sig-
nificant period of time. To avoid this issue, the trigonometric
functions are shifted by a random number every 100 frames.
Hence, the noise will be continuous for the majority of the
time but will shift occasionally removing the visual repeti-
tiveness. This shift is less visually apparent than the repet-
itive movement, especially if the rate of change is adjusted
randomly.

Noise based on the tangent function shown below cre-
ates very aesthetically pleasing turbulence. While this type
of noise does not work as well with textured normal forces
to create a particular shape for the fire, it can be used very
successful as textured noise to create impressive resulting

Fig. 3 This illustrates the different effects from sine-based (left) and
tan-based (right) noise functions

images.

ftan noise(i, j, k) =
⎛
⎝

tan(ij + t)

tan(jk + t)

tan(ik + t)

⎞
⎠

Figure 3 shows examples of the different noise types. It
is clear that noise based on sinusoidal functions does not
affect the overall shape of the fire and only provides local
turbulence. However, trigonometric noise based on tangent
functions affects the entire shape of the fire and, while more
aesthetically pleasing, is more challenging to control.

4 Force textures

We propose a method to let animators control the fine details
of the fire by using 2D and 3D textures. The designed tex-
tures are used as multipliers of the normal and noise forces,
effectively controlling the size and turbulence of the fire.
This approach has the following advantages: (1) It allows
animators to paint onto a texture which when applied to
the simulation creates additional turbulence or growth in the
fire. (2) It allows for easy importing of existing 2D/3D tex-
ture data from other applications with minimal modification.
(3) A large wealth of expertise can be applied to optimise the
work flow in order to make the creation of specific fire ef-
fects very fast. For creating animation of fire changing its
shape, we can simply switch between different textures. If
we want them to morph smoothly, interpolation techniques
such as [32] can be applied. In the rest of this section, we
explain the details of using 2D and 3D textures to control
the forces.

4.1 2D textures

We map 2D textures onto the isosurface of the fire and use
it as the multiplier of the appropriate forces, predominately
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Fig. 4 This shows a grid texture mapped onto a stable fire isosurface

the normal force. The greatest issue with using a single 2D
texture is how to generate the texture coordinates. Here, we
use spherical mapping that uses the angles between the grid
cell and the centre of the fire source. This effectively wraps
the entire isosurface in the texture and means that the same
area of texture will always relate to the same basic region of
the isosurface. This technique is outlined in Fig. 4. A static
texture applied to the different force multipliers will create
a stable and effective fire effect as shown in Fig. 5. A nor-
mal texture value used to affect the individual forces will
vary from 0 to 1. In order to stop the fire growing outward
constantly, the range of the texture values is adjusted so that
some negatives forces are applied, hence the value varies
from −0.5 to 0.5. For procedurally generated textures, the
approaches suggested in [1] and [17] could also be used to
develop a texture over the fire isosurface. Spherical map-
ping will only suit a subset of source types. For other source
types such as a plane, plane projection could be used to map
a texture onto the side of the fire.

Obviously, this technique suffers from distortion as the
fire grows and the interface changes shape therefore mean-
ing an area of the texture will move slightly on the surface
of the fire. A 3D texture outlined in Sect. 4.2 allows for finer
adjustments while a 2D texture even with distortion can con-
trol the general shape of the fire.

4.2 3D textures

The use of 3D textures allows more specific control over the
finer details of the fire. Instead of the texture only control-
ling forces around the fire isosurface, the texture can control
velocities at any point inside the domain. This gives the an-
imator much more control over finer details and avoids the
problems of distortion from which 2D textures can suffer. As
the 3D texture affects the entire simulation domain, all ve-
locity cells lookup a point inside the texture and use that as
the multiplier for the local normal force. Hence, areas with
large texture values will increase the fire growth in those
areas, meaning that the fire can be drawn out into specific
shapes with realistic looking flame growth.

Fig. 5 This shows the musgrave [6] and striped textures applied to the
fire isosurfaces statically to create two different fire effects

At each time-step, noise forces are also added in the same
way as the 2D approach, by adding trigonometric velocities
at the cells intersected by the isosurface. It is only applied
at the fire isosurface to maintain the visual effect of the tur-
bulence along the ignition boundary but the normal force is
applied in all cells to allow the grow outwards more quickly
and speed up in locations away from the isosurface.

By using the simple painting method outlined in Sect. 5,
the user can paint onto areas of the surface from which the
fire should grow. This allows the animator to control the
growth of the fire around a dynamic scene while maintain-
ing the aesthetically pleasing turbulence created by the noise
functions.

5 User interaction with fire

We propose an intuitive sketch interface to draw the 2D and
3D textures onto the fire. As shown in Fig. 6, the animator
can interact with the fire easily painting forces directly onto
the isosurface of the fire. The location of the user click on
screen is saved and the 3D position on the interface is re-
covered from the rendering information. In the case of the
2D wrapped texture, a 2D circle brush is then applied to that
point in the 2D texture either increasing or decreasing the
texture values. In case of 3D texture, a spherical brush is
used to affect texture values around a particular 3D point.
Figure 11 outlines the basic effect possible of adding shapes
onto the interface of the fire.

The changes to the texture are directly visible to the user
as they are rendered on top of the isosurface. The user can
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Fig. 6 This outlines the simplicity of painting forces onto the fire iso-
surface and the resulting change in the fire shape. The green paint
shows fire growing outward and the dark red paint signifies pulling
the fire back to emphasis the shape

then see the changes to the shape of the fire that are caused,
make any necessary changes or undo mistakes using a sim-
ple backtracking system that stores previous version of the
texture. It also reduces the number of simulation variables
that the animator needs to understand and control as the ma-
jority of control is through the texturing system.

6 Incompressible Navier–Stokes solver

The fluid solver is based on Jos Stam’s Stable Fluids [28]
method using the basic semi-Lagrangian advection method
and a Gauss–Seidel linear solver to find the solution to the
divergence Poisson equation. Basic additions to the solver
are outlined below.

Decrementing Temperature Advection is used to reduce
the temperature of the fire as it moves away from the fire
source toward a lower limit of zero. It uses the simple equa-
tion below where burnRate depends on the type of fuel be-
ing simulated and can be adjusted to increase the size of the
overall fire.

tempt+1(pos) = max
(
tempt (pos − �tVt ) − burnRate,0

)

Buoyancy Forces apply an automatic upward motion depen-
dent on the temperature of the fire which is similar to the
approach of [8], assuming that the ambient temperature is
zero. The equation below outlines this simple process that
moves the fire upward.

fbuoyancy(i, j, k) =
⎛
⎝

0
temp(i, j, k)

0

⎞
⎠

Boundary Conditions control how the fire interacts with the
boundary of the simulation domain. Open boundary condi-

Fig. 7 Example of fire simulation with (left) and without (right) dif-
fusion

tions are used assuming that the source will remain inside
the domain so that the temperature flows out of the domain.

Diffusion of the temperature field is not applied as it
dampens out much of the interesting details of the fire as
shown in Fig. 7.

6.1 Stability

The basic Stable Fluids solver gives stability through an ad-
vection scheme that only uses velocities that already exist
in the system. Furthermore, the calculation of a divergent-
free velocity system stops strange visual artefacts such as
temperature “black holes.” In order to preserve stability in
the simulation, it is important that added forces do not push
velocities too high such that the advection scheme begins
jumping large distances and visual artefacts appear.

The normal and noise forces should not cause any unex-
pected behaviour as long as their magnitudes are not set too
high. Normal forces just increase the natural growth of the
fire and noise forces add basic turbulence at a thin surface
inside the domain.

Therefore like any fluid simulation, the animator must not
increase the external forces too drastically or visual artefacts
will appear. When a more extreme effect is required by the
animator, the animation step size should be altered so as to
keep the forces low but increase the visible speed of the fire.

7 Implementation on GPU by CUDA

Using CUDA, the GPU can calculate the temperature and
velocities of multiple cells at once allowing for real-time
simulation. The issues of implementing our system onto the
GPU are explained in the following subsections. We first ex-
plain about the memory allocation in Sect. 7.1. Several steps
outlined above and in [28] were combined into a small set
of kernels. Each kernel is executed once per grid cell in the
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Fig. 8 The breakdown of the simulation with items numbered for
Sect. 7. Blue tasks are standard tasks used in general fluid simulations.
Purple tasks are specific for this fire simulation technique. The red ren-
dering task is independent of the simulation methods

domain each time step and is given the basic variables of
the simulation as arguments. These kernels are explain in
Sects. 7.2 and 7.3. Finally, we discuss about issues about the
memory transfer in Sect. 7.4.

7.1 Memory allocations

Our implementation makes use of CUDA textures as they
give optimised access patterns for spatially-similar accesses
and fast linear interpolation. However because of the CUDA
memory layout, kernels cannot directly write to textures.
Therefore kernels write to global memory which is then
copied very quickly to a CUDA array bound to a texture.

3D textures are required for the temperature field, the ve-
locity field and appropriate texture space is needed for the
force texture. Additional memory space is required for the
writable global memory for the textures, plus for storing di-
vergence and intermediate results during the divergence cal-
culation.

7.2 Simulation kernels

The Vector Animate kernel executes vector advection and
calculates additional forces including from the textured iso-
surface (which are steps 1–5 in Fig. 8). For each cell, it cal-
culates the vector at the next time step, then adds the buoy-
ancy forces. It then calculates what additional normal and
noise forces should be applied depending on if the cell lies
on the isosurface and the corresponding texture value.

The Temperature Animate kernel executes temperature
advection and adding sources (which are steps 7 and 8 in
Fig. 8). It executes the simple decreasing advection and then
checks to see if the cell is inside a source. This checks

against a 3D texture that contains the various locations of
the fire sources or can be hard-coded for speed.

The linear solver (covering step 6 in Fig. 8) requires three
different kernels for Divergence Calculation, Poisson Solv-
ing, and Setting Zero Divergence. A GPU implementation of
a similar linear solver is outlined in [5].

7.3 Interaction kernels

In order to allow for real-time interaction with the force tex-
tures, several additional kernels were used. The kernel used
to the render the fire isosurface stores the 3D location of
the isosurface for each on-screen pixel to a separate buffer.
When the user clicks on the surface, the location of the click
is retrieved and passed to the relevant Brush kernel for the
2D or 3D approach. These kernels are executed over the rel-
evant section of the force texture and find texels within the
radius of effect and increment/decrement their values.

7.4 Data transfer over the memory

The costliest part of a GPU-based application is the memory
transfer to and from the GPU. Our implementation only uses
memory transfers during the initiation and shutdown of the
application to load and save textures. A set of kernels is used
to set up the initial conditions for the simulation. Once the
simulation has been executed, the same memory location is
then used by the renderer also executed on the GPU. The
textures are uploaded from the CPU to the GPU and then
edited manually on the GPU as required by the animator.
Additional keyframes are also stored on the GPU within the
limits of the GPU memory. Otherwise, keyframes are copied
asynchronously to and from the CPU so that the user does
not notice any visible latency. High shared memory usage
and careful global memory accesses reduce the execution
time of the threads greatly. For general CUDA optimisation
guidelines, the reader is pointed toward [23].

8 Results

Various examples of fire were created using 2D and 3D tex-
tures. Some examples were created from keyframe textures,
and some were designed by an animator.

By utilising a 2D texture that varies over time, the shape
and turbulence of the fire can be adapted from frame-to-
frame. One approach offsets the texture coordinate by a
particular value every time step which creates the effect
of a continuous moving texture (assuming that the texture
was wrapped) and causes the shape and turbulence applied
across the fire to be constantly changing. This is best used
for general patterns such as in Fig. 9 which applies a striped
texture with an increasing V coordinate such that in appears
to move upward.
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Fig. 9 Three frames from an animation of a striped texture which is
moved upward through the flame by incrementing the V texture coor-
dinate

An alternative approach uses a 3D texture to store a set of
2D animation frames as slices. Then to animate the feature,
the texture lookups incrementally move deeper through the
texture going from frame to frame. By using a 3D texture,
hardware linear interpolation can be used to blend between
frames smoothly. An example of animating letters modelled
by 2D textures blended from one to another are shown in
Fig. 10.

Finally, we asked an animator to design some fires us-
ing our system. The animator used the 3D texture interface
to design a fire of a character face and one with letters on
it (Fig. 11). The animator, who had little knowledge of the
working system, commented on the intuitive aspect of the
interface especially given that the images were produced in
under fifteen minutes.

The figures shown throughout the paper are simulated
in a 64 × 64 × 64 domain. The textures used were gen-
erated using the GPL licensed graphics tool Blender [3].
The images are rendered using a volume rendering approach
based on [15] and [5]. Two different rendering colourings
were used to best display the shape of the fire for Figs. 1,

Fig. 10 A keyframe animation of letters blended from one texture to
another

Fig. 11 Two examples of shapes growing out from the surface of the
fire using forces painting onto the surface of the fire and saved into a
3D texture

6, 10, and 11 and the turbulence effect in Figs. 3, 5, 7,
and 9.

The system was implemented using CUDA and executed
on an NVIDIA Quadro 5800 graphics card with 4 GB mem-
ory. Figure 12 shows the achievable frame rates for simula-
tions using an animated texture. The additional cost of an-
imating the texture is negligible. Even though 3D texturing
requires more texture accesses, the actual simulation speed
difference is minimal.
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Domain size Steps (sec)

32 638
64 142
96 44.7
128 19.2
160 10.0

Fig. 12 Resulting execution speeds in simulations steps per second for
cube domains on an NVIDIA Quadro 5800

9 Discussion

Many different approaches are taken to animating the move-
ment of fluids in order to control their shape. In order to
create proper visible flow, it can be concluded that the veloc-
ity field must be adapted, which is particularly challenging
given the issues in visualising a 3D velocity field. Textured
forces offer a new model for interaction with the velocity
field while maintaining visually impressive results.

Furthermore, instead of using a system that requires
much trial and error, such as particle based approaches, to
find the perfect result this allows the animator to interac-
tively edit the fire during the animation and control the re-
sulting image based on physical simulation. By working di-
rectly with the rendered fire, the animator can easily under-
stand the effects of the controls and quickly adjust the sim-
ulation toward the desired effect.

A few of the effects shown in the figures could possi-
bly also be achieved through careful addition of sources in-
side the simulation. Instead of adjusting the forces, other ap-
proaches would simply create new sources where the fire
was to grow. However, that approach will lack the visible
flow of the fire and animating between different shapes of
fire remains a significant challenge. Our approach gives both
an intuitive model of fire growth for the animator, and an ex-
tremely simple way of blending between two different pat-
terns while maintaining realistic fire flow.

Furthermore, the ability to control the fire using textures
is highly dependent on the resolution of the texture and also
the size of the simulation domain. These techniques could
be improved by linking with a subgrid noise approach such
as [16] and [21] in order to improve the visual quality of
the image. Linear interpolation is used given its fast hard-
ware implementation but can cause visual degradation. An
improved interpolation technique would improve the texture
mapping quality and could also allow for more complicated
transitions between frames.

2D and 3D textures can be used together to gain further
control over the fire. 2D textures which offer simple fire
shapes and a very easy animation approach can control the
noise or predominantly the normal forces in the fire at the in-
terface. Meanwhile, a 3D texture can grow the fire into more
specific shapes by applying controlled normal forces.

10 Conclusion and future work

This paper introduces a real-time technique that allows easy
control of the shape and turbulence of a fire using textured
forces.

Our approach uses a 2D or 3D texture defined across
the simulation to control the growth and turbulence of the
fire. Trigonometric based turbulence and buoyancy forces
are added to a stable fluid solver in order to create a realistic
fire effect.

These techniques integrate easily into a normal fluid
solver and can be linked with an appropriate real-time vol-
ume rendering system. It requires minimal additional mem-
ory and the extra memory accesses are easily optimised so
that the full simulation and rendering can execute in real-
time.

This texturing approach offers many advantages over
other techniques for animating fire. Most artists already have
a deep knowledge of texturing and imaging software that
will make this simulation much easier to understand. Fur-
thermore, with minor editing, existing texture assets can be
imported to be used as fire animations. Moreover, animating
the fire uses the same principals as animating drawn frames.
An interactive interface allowing the user to directly influ-
ence the animation of the fire in real-time is of real impor-
tance for increasing animator work flow and gaining better
results from physical simulations.

Creating arbitrary shapes of fire is a challenging problem
compared to other fluids such as smoke and water, as done
by other researchers [7, 20, 27, 33]. This technique allows
for specific local control of the growth and turbulence of the
fire and will provide an aesthetically pleasing global shape.
However, this requires careful control by the artist so that
additional turbulence created by the noise forces does not
overwhelm the shape created using the normal forces. Auto-
matically adjusting the normal forces to interact better with
noise forces is one of our future research topics.
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