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Abstract—The degrees of freedom of a crowd is much higher than that provided by a standard user input device. Typically, crowd-

control systems require multiple passes to design crowd movements by specifying waypoints, and then defining character trajectories

and crowd formation. Such multi-pass control would spoil the responsiveness and excitement of real-time control systems. In this

paper, we propose a single-pass algorithm to control a crowd in complex environments. We observe that low-level details in crowd

movement are related to interactions between characters and the environment, such as diverging/merging at cross points, or climbing

over obstacles. Therefore, we simplify the problem by representing the crowd with a deformable mesh, and allow the user, via

multitouch input, to specify high-level movements and formations that are important for context delivery. To help prevent congestion,

our system dynamically reassigns characters in the formation by employing a mass transport solver to minimize their overall

movement. The solver uses a cost function to evaluate the impact from the environment, including obstacles and areas affecting

movement speed. Experimental results show realistic crowd movement created with minimal high-level user inputs. Our algorithm is

particularly useful for real-time applications including strategy games and interactive animation creation.

Index Terms—Three-dimensional graphics and realism, animation, input devices and strategies, gaming

Ç

1 INTRODUCTION

CROWD-CONTROL research has become increasingly popu-
lar due to its potential applications in computer games

and animations. In real-time strategy games such as
StarCraft 2 and Age of Empires Online, controlling military
units to attack the opponents is a key criterion for success.
Players have to control the units using mouse gestures,
which consist of multiple clicks and drags, to define the
movement and formation of the units. Similarly, crowd
simulation software like Massive requires the animators to
carefully design the behavior of the characters, such as
programming their synthetic sensors and effectors, to
control the formation of a crowd [1]. Such kinds of multi-
pass control are time consuming and inefficient, thus
degrading the user’s experience.

Recent research eases the pain of formation control in
crowds by utilizing algorithms such as space-time optimi-
zation [2], spectral analysis [3], and hierarchical group
control [4]. These algorithms require multiple steps for
designing the crowd movements, including insertion of
intermediate keyframes and specification of the trajectories
of some characters, especially when obstacles and environ-
ments are involved. This hugely limits the usability of the
algorithm, particularly in real-time applications. Here, we

see a dilemma: we wish the crowd to be realistic with fine
details, but we also want a user to be able to specify these
details interactively with a simple control scheme.

The major difficulty of crowd-control lies in its high
degree of freedom. Each character in the crowd is an entity
and should be able to move independently under different
circumstances. For example, when a crowd walks along a
pathway that diverts into multiple smaller roads, the user
needs to specify how the crowd should split into smaller
groups and pass through each of the available routes. This
requires a lot of user input and is generally achieved using a
multi-pass approach [2]. However, we observe that most of
the detail of the character movements is affected by the
interactions between the crowd and the environment. In the
above situation, the crowd is split so that each character
walks into the street that is the closest and least congested,
while avoiding crossing the path of the other agents. In
other situations, a character may actively climb over an
obstacle, rather than pass through a congested pathway, as
it is a better option to reach their goal. We believe that these
kinds of interactions can be computed automatically with-
out a significant loss in simulation quality.

In this paper, we propose a new method to reduce the
dimensionality of the crowd-control problem by a mesh-
based control scheme, and use a multitouch device to
capture multiple control points simultaneously. The subtle
control signals from the fingers are used to deform the mesh
and alter the way it interacts with obstacles and the
environment. Being a single-pass approach, the user can
design the high-level movement and formation of a crowd
intuitively using our system. The low-level details, such
as the optimal trajectories of individual characters to
achieve the formation, as well as the various interactions
between the characters and the environment, are automa-
tically controlled by the system in real-time.

The quality of the resultant animation depends heavily
on the intelligence of the characters for achieving the
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movement and formation criteria. Unlike previous mesh-
based methods that rigidly constrain the characters to the
mesh [2], our characters possess the intelligence to decide
their optimal target positions to form the desired formation
using a mass transport solver [5]. This essentially minimizes
the overall movement of all characters and reduces the
chance of potential blocking among them. This is particu-
larly useful for interactive applications, where users may
wish to change the motion of the crowd suddenly, in which
case, flexibility in the characters’ motion will help prevent
degradation in simulation quality. We integrate the metric
proposed in [6] into our mass transport solver such that the
characters evaluate the optimal paths by minimizing a cost
function. This allows them to navigate realistically in
complex terrains involving obstacles and areas that penalize
movement speed.

Experimental results show that our system can produce
realistic scenes of a crowd controlled through minimal high-
level input signals from the user. We create scenes in which
the crowd has to pass through complex environments such
as a street with multiple moving cars, constrained environ-
ments such as narrow pathways, and areas with several
route choices that contain different obstacles. The characters
interact with different environment objects in particular
ways, such as climbing over walls and ducking while
walking under trees.

Compared to the approach in our previous work in [7],
we have enhanced our system such that the complexity of
the environment is considered when assigning final posi-
tions in the crowd formation. In particular, our system now
takes into account areas of the environment that require
characters to conduct special actions such as crawling,
jumping, climbing, and swimming. This is achieved by
applying a modified version of the distance metric based on
the Eikonal function [6], instead of using a simple euclidean
distance metric when solving for the characters’ goal
positions. By including information on the impact of the
environment on an agent’s path the system can produce
realistic and efficient formation control even under very
crowded and complex environments, which could have
easily resulted in congestion in our previous system. We
also present an in-depth user study to analyze our user
interface compared to traditional mouse-based controllers.

Our system is best applied to real-time crowd-control
applications involving formation changes and environment
interactions such as strategic games. It can also be used for
interactive animation creation to generate scenes such as
city-scale crowd flow.

2 RELATED WORK

Crowd simulation has largely been focused on synthesizing
realistic pedestrian movements based on agent models [8],
[9], [10], fluid models [11], optimization [6], [12], and data-
driven models [13], [14]. In this research, we are more
interested in crowd and formation control. The main focus is
to control a group of characters according to user commands,
for animation synthesis and real-time applications such as
computer games. We propose to control crowd formations
using a multitouch device, and discuss techniques which
could possibly be applied for such a purpose here.

2.1 Representation for Crowd Formation Control

In crowd formation control, agents are directed in such a
way that they move in a similar direction to the other agents
in the crowd while maintaining an overall formation. This is
essentially a high-dimensional problem with a single
objective as compared to ordinary agent-based crowd-
control systems, in which the control signal is distributed to
the individual agents.

One well-known solution to such a problem is using a
deformable mesh to represent the crowd. Kwon et al. [2]
apply Laplacian mesh editing [15] to deform and con-
catenate existing crowd formations to synthesize larger
scale animations. Takahashi et al. [3] use spectral analysis to
automatically interpolate two given formations. Each
formation is represented by a Delaunay triangulated mesh
in these methods. Gu and Deng [4] propose a representation
called formation coordinates, which is a local coordinate
system that is similar to polar coordinates. In [16], behaviors
of pedestrian crowds are used to determine the formation of
groups in response to the local environment. These
behaviors, however, are not applicable to controlling large
groups involving more than a few characters and only
define a subset of shapes that a group can form. For our
multitouch interface, we adopt the deformable mesh
representation as this allows complex shapes to be
manipulated by low-dimensional control signals.

One problem with previous methods is that the
characters are strongly bound to the target location in
the formation: Once their target locations are defined in the
goal formation, the characters are required to reach their
respective positions even if other characters might be
blocking them at the formation border. In real situations,
people in the border will simply shift toward the center of
the formation to produce space for the people arriving late.
Although Gu and Deng provide an extension to their work
to include specification of formation interpolation, [17], this
still requires additional stages of input from the user to
achieve nice transitions between formations. We found this
problem can be solved by providing more degrees of
freedom to the agents when interpolating formations by
employing a mass transport solver [5]. This results in the
characters tracking the desired formation effectively while
not requiring additional user input to do so.

2.2 Crowd-Control Interface

In this research, we propose to use a multitouch device to
manipulate the formation of a crowd during gait in real
time. Here, we review how previous methods can be
applied for such a purpose.

In most crowd-control methods, strokes are used as
control lines to specify the movements of the crowd. These
are applied to the whole [4], [18] or subgroups [19], [20] of
the crowd, or trajectories of some vertices that represent the
crowd [2]. Such trajectories can be replaced by the
trajectories of the user’s fingers on the multitouch device
for real-time control.

One problem that arises when directly applying previous
methods for real-time crowd-control is the difficulty in
specifying low-level details when the crowd interacts with
the environment. For example, it is difficult to move
different groups of characters in a crowd through narrow

212 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 2, FEBRUARY 2014



corridors unless a multi-pass scheme is used, in which the
user stops the animation and draws multiple strokes offline
to specify the individual paths for different groups. A
possible solution is to define a vector field and move each
subgroup along its gradient [21]. However, there can be
cases that the flow is opposite to the direction that the
characters are supposed to move. Patil et al. [22] define an
interface for manipulating continuum-based fields to allow
a user to refine the flow of the crowd. This approach does
not allow direct control over the characters in the simula-
tion, instead relying on the user to specify the general
interaction of a crowd with the environment. This generally
requires the user to author overall crowd flow by augment-
ing an existing simulation using multiple input strokes. We
prefer to use a more interactive process allowing the users
to easily intervene and adjust the trajectories of the
characters on the fly.

In this paper, we solve these problems by making use of
the passive dynamics of the interactions between the
characters, as well as those between the characters and
the environment. Our mesh deforms automatically based
on the influence of the environment, while keeping the
overall formation.

2.3 Incorporating Motion Data

Previous crowd simulation largely focuses on the use of
simple running and avoiding motion to guide a set of
characters through a virtual environment. Gu and Deng [23]
looked at enhancing the diversity of agent motion in crowds.
However, motions that involve a character interacting with
the environment around them were not considered. Since
many interesting scenarios involve a richer set of actions
involving direct character-environment interactions, we wish
to consider the effect of such motions on the character’s path
planning. We suggest the use of patch-based approaches to
achieve this. Previous work on embedding motion data in
virtual environments involves either placement of specific
patches in a regular tiled grid [24], [25], or stitching of
irregular shaped patches in a highly constrained fashion [26],
[27]. While these methods are effective for producing large-
scale crowd scenes the relatively inflexible nature of the
patches makes them difficult to apply directly to interactive
control of a crowd. We wish for the characters to be able to
enter and exit a given patch based largely on the directions
given by the user. We, therefore, propose a simplified version
of motion data patches that permits flexibility in the
simulation while still conveying relevant information on
character-environment interactions.

2.4 Contributions

There are two major contributions in this paper:

1. We propose a new single-pass scheme to manipulate
a crowd in a constrained environment. We model
the crowd as a deformable mesh, and allow the user
to give high-level instructions on the crowd move-
ment and formations. The system then controls the
detailed movements of individual characters, con-
sidering the passive and active dynamics of interac-
tions with respect to the environment.

2. We propose a new method to compute the optimal
trajectories of the characters in the crowd. The
characters are not constrained to specific locations
in the deformable mesh, but cooperate with
each other to fill the mesh using a mass transport
solver. We integrate an augmented version of the
cost function proposed in [6] into the solver, such
that the system considers the impact from the
environment to individual characters and computes
their optimal trajectories to achieve the required
formation.

3 METHOD OVERVIEW

Our system is a three-layer system that consists of the user-

input layer, the intermediate mesh representation layer, and

the agent layer. Fig. 1 shows the overview of the proposed

system. The control signals consist of the high-level user

inputs from the multitouch device that specifies the overall

movement and formation of the crowd (see Section 4). The

intermediate deformable mesh changes its shape according

to the user input and its interaction with the environment

(see Section 5). The mesh configuration is used to convert

the high-level signals into lower level control signals for the

agents. Finally, the individual agents are guided to the area

specified by the deformable mesh using the solution of the

mass transport problem (see Section 6).

4 MOVEMENT AND FORMATION CONTROL

In this section, we explain how we create a mesh to

represent a crowd, and control the crowd with the user

control signals from the multitouch device. We first describe

the mesh representation and its deformation model. Then,

we explain our deformation scheme based on the input

from the multitouch device.

HENRY ET AL.: INTERACTIVE FORMATION CONTROL IN COMPLEX ENVIRONMENTS 213

Fig. 1. The overview of the proposed system.



4.1 Crowd Representation

We use a deformable mesh, whose shape is computed by
the as-rigid-as-possible deformation scheme [28], to repre-
sent the formation of the agents. In our experiments, we use
a rectangular shape composed of a uniform triangle strip,
although this can be easily enhanced to arbitrary shapes by
applying uniform sampling and Delaunay triangulation.

The user interacts with the mesh using a multitouch
device. When the user touches the mesh, the nearest vertex
is selected as a control point. Let us define a control point as
ci 2 C, where i is the index of the control point, and C
denotes the set of all control points. The user then drags the
control points on the screen to define continuous spatio-
temporal trajectories that specify where the control points
must pass in the future frames. We represent each trajectory
as a set of 2D check points by dividing the trajectory into
segments of a predefined length. For each frame, the target
location of each control point, ciðpiÞ, is defined based on the
next check point in the corresponding user drawn trajectory
pi. We pass the current location of each control point, ciðpiÞ,
and the set of vertices of the current mesh, Vc, into the as-
rigid-as-possible transformation solver (described in the
next section) to generate the deformed mesh, which is called
the user mesh, Vu. Vu is subjected to the deformation based
on the environment in a later stage.

We found in some cases a vertex or agent can take
particularly long to negotiate an obstacle, or large deforma-
tion of the mesh occurs as a result of the user forcing the
mesh to collide with large obstacles. In these cases, the
agents do not track the formation as well as desired. To
handle this we apply a small opposing force to the
movement of the user’s constraints so as to slow the
movement of the mesh and allow the agents to catch up.
This force is calculated proportional to the average distance
of each agent from their respective vertex on the control
mesh. To prevent the constraints from ever moving back-
ward, the magnitude of the opposing force is limited to that
of the constraint velocity.

Although the agent’s goal points are assigned in terms of
the vertices of Vu they are not limited to these points on the
control shape, particularly when there is a discrepancy
between the number of agents and the number of vertices.
In this situation, the goal positions of the agents can be
determined using barycentric coordinates across the trian-
gles of the mesh. With a triangle ID and appropriate
barycentric coordinates an arbitrary number of goal points
can be produced at arbitrary positions across the mesh.
Furthermore, the number of goal points can be easily
altered with the number of agents, without affecting the
mesh shape by adding or removing vertices.

4.2 Point, Line, and Area Controls

Here, we propose different control schemes to overcome the
limitation of multitouch systems and produce a wider variety
of control signals for manipulating the deformable mesh.

While a high-resolution mesh provides flexibility for
defining the crowd formation, the number of touch points a
user can manipulate with a multitouch device is limited. As
a result, the user can only directly control a subset of vertices
on a mesh. Using the traditional point-based control system
[28], it is difficult for the user to control the rigidity when

deforming the mesh. That is, when dragging a control point
on a mesh, the system does not know how much the
neighboring vertices should follow such a control point.
Igarashi et al. [28] solve the problem by allowing the user to
predefine the rigidity of the mesh manually however, this is
not a plausible option for use in real-time control. We,
therefore, present a set of controls, namely line and area
controls, in addition to the point-based control scheme.
These controls provide the user with the ability to
manipulate the mesh with varying levels of rigidity.

The line-based control system constrains the vertices of
the control mesh that are between two points specified by the
user. When two control points c0 and c1 are defined, the
vertices between them are sampled as supplementary control
points. In our as-rigid-as-possible solver, they are applied as
soft constraints as they are allowed to be affected by the
environment in a similar way to the rest of the uncontrolled
vertices on the mesh (see Section 5). When c0 and c1 are
moved, the target location of the supplementary control
points is computed by linearly interpolating the updated
positions of c0 and c1. Defining multiple line constraints on
the mesh allows the user to manipulate different sections of
the mesh in different ways simultaneously.

We also propose an area-based control that provides
rigidity to a 2D portion of the mesh. The section on which
this control is applied is determined by the convex hull of
three or more user-defined control points. When the area
control is created, supplementary control points are sampled
along the edges and inside its convex hull. They act as soft
constraints on the mesh in the same way as in the line
control. The mean-value coordinates [29] of these supple-
mentary control points are computed and are subsequently
used to update their positions throughout the lifetime of the
area control. In this way, the user can use a few control
points to manipulate varying proportions of the mesh.

The effects of using the three different control schemes;
point, line, and area, can be seen in Fig. 2. Given the same
control signal (see Fig. 2 Top Left) but different control
schemes, the final formation is different (see Fig. 2 Top
Right, Bottom Left, and Bottom Right). The different forms
of control confer varying levels of rigidity to the mesh,
giving the user greater flexibility in the kinds of formations
they can create with a small number of inputs.

To identify the type of control that a user wants to apply,
the timing that the fingers are placed on the multitouch
screen is examined. A single touch input gives basic point-
based control, two simultaneous touch points indicate a line
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Fig. 2. Controlling (Top Left) a rectangular mesh with (Top Right) point-
based control, (Bottom Left) line-based control, and (Bottom Right) area-
based control on the four corners.



control, while three or more simultaneous touch points
create an area control. This scheme allows for different

kinds of control to be applied simultaneously to different
parts of the mesh. In Fig. 3, left, we show an example where

the user applies a line control at the left of a square and an
area control on its right. The result when the user drags

these areas is shown in Fig. 3, right. It can be observed that
the left half of the shape is deformed while the right part is

kept rigid thanks to the two types of control used.

5 ENVIRONMENT-GUIDED MESH DEFORMATION

In this section, we explain how we deform the control mesh

of the crowd according to its interaction with the environ-
ment. This scheme is especially important for achieving

effective obstacle avoidance in scenes where there are
multiple obstacles, such as city scenes with several streets

that are diverging and merging. The deformation of the
control mesh is guided by a potential field generated by

the environment. By letting these low-level interactions be
controlled by our system, we allow the user to concentrate
on the higher level control of the crowd.

The environment is modeled with a set of objects. Each
object generates a potential field that will affect near-by

vertices of the control mesh. Referring to Fig. 4, the potential
field at point x is computed based on the distance (d) from

the object, the predefined range (r) and the direction vector
from the center of the object (o). The amplitude of the
potential field is computed based on the distance between

the obstacle surface and the sample point:

fðxÞ ¼ 1� d
r ð0 < d < rÞ

0ðr � dÞ:

�
ð1Þ

We divide the floor into grid cells of equal size, and compute
the potential field for each cell. The direction of the field is set
to x�c
kx�ck where x is the position at the center of the cell and c is

the center of the obstacle. We use this approach because
simply using the distance field can cause vertices to move

slowly when there are long edges on the obstacle. The
direction vector toward the obstacle center increases

the tangent element of the vector field in such cases.
Given a user mesh from the previous stage Vu, we

examine the position of each vertex of the control mesh,

and sum the potential field produced by all the obstacles at
that position. We also monitor the collisions between the

vertices and the obstacles, and push them out to the nearest
point on the surface if they penetrate through the obstacle.

The edges of the control mesh are allowed to pass through

the environment. The vertex positions of Vu are updated
based on the field and the final mesh Vf is then computed.

To prevent the control mesh getting stuck in the
environment, we limit the obstacles shapes to convex hulls,
and the minimum distance between two obstacles to at least
that of an agent’s diameter. Concave obstacles can still be
modeled with a few smaller convex obstacles. In this case,
the potential fields produced by each of the convex
obstacles do not prevent a user from directing a crowd
into the respective concave area. For complex environ-
ments, such as several concave obstacles packed tightly
together, the agents or the mesh vertices may get stuck and
become unable to follow a user’s commands. Therefore, it is
preferable in such an interactive application to limit the
complexity of the environment. This is because we wish for
the user to decide the overall direction of the mesh
movement as much as possible, and for all agents to be
able to track the user’s instructions well.

6 CHARACTER MAPPING

Once the configuration Vf for the control mesh is decided,
we next have to determine which point on the mesh each
agent will move to. To minimize obstructions between
agents in the crowd during transition to the new formation
it is necessary to assign an agent a target position based on
their current configuration. In this section, we first describe
how we determine the goal position of each agent by
employing a solution to the mass transportation problem
(see Section 6.1). We then discuss how we use a potential
field construction to incorporate an environment-aware
metric in our mass transport solver (see Section 6.2). This
metric not only accounts for obstacles and other agents in
the environment (see Section 6.2.1) but also considers the
motion data that will be used in the final render of the scene
(see Sections 6.2.2 and 6.2.3). By doing this we are able to
encode motion data information implicitly in an agent’s
planning. This results in better goal assignment and
subsequently more efficient movement of agents to satisfy
a user’s input formation.

6.1 Assigning Agent’s Goal Positions

To assign each agent’s goal position in the user-defined
formation, we use a formulation for solving the transporta-
tion problem, which is used to compute the Earth Mover’s
distance [5]. The transportation problem is solved by
minimizing the amount of work to move objects from a
set of source locations I to a set of target locations J . The
solution to the problem consists of finding the amounts of
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Fig. 3. Left: the user applies a line control and an area control onto the
same mesh. Right: the resultant deformation.

Fig. 4. The field produced by the obstacle is dependent on the distance
of the point from the obstacle relative to the range parameter, as well as
its relative direction from the obstacle center.



the objects to be transported across all routes, henceforth
referred to as “flows” (fi;j), that minimizes the overall cost
of transportation between the two point sets. A set of flows
can be evaluated using:X

i2I

X
j2J

ci;jfi;j; ð2Þ

where ci;j is the cost of traveling from point i 2 I to point
j 2 J . This cost is assessed for the full connectivity of the
two point-sets. The optimal set of flows, therefore, mini-
mizes (2). Readers are referred to [5] for further details. In
this work, the source points correspond to the locations of
the agents and the target points are the vertices of the mesh
Vf at the current simulation step. Each point i 2 I and j 2 J
can be weighted to allow user-defined partial/full matching
between the two point-sets. These weights act as the supply
and demand signals from the source and goal points,
respectively. The flows that minimize (2) satisfy these
signals. For example, for the purposes of mass transport,
high supply weight from a point i 2 I and low demand
weights on several points in J can produce solutions with
one source point feeding to multiple goal points. In this
work, it is desirable for each agent to be assigned to only
one goal point and vice-versa. To achieve this, we assign a
weight of 1 to all source and target points to allow full
mapping from current agent positions to candidate loca-
tions in the mesh. This provides a set of point-to-point
correspondences between the agents and the target forma-
tion, which is recalculated at every time step.

6.2 Environment-Aware Metric for Goal Assignment

Appropriate assignment of agents to the vertices of the
formation mesh, Vf , is achieved by employing a suitable
cost metric, ci;j, in the mass transport solver. In previous
work [7], an euclidean distance metric was used to solve the
transportation problem for an agent’s target location.
However, this is not optimal, particularly in environments
with large obstacles. Consider a situation where there is an
obstacle between the crowd and their target formation as in
Fig. 5. The best solution would have the agents on the
outside of the crowd move to locations in the middle of the
target formation as they travel a shorter distance and reach
these points earlier (see Fig. 5, pink arrow). By using the
euclidean distance metric (see Fig. 5, blue arrow) the cost
provided to the mass transport solver does not reflect the
route the agent must take to reach the formation (see Fig. 5,
green arrow). The true shortest distance that takes into
account the obstacles must be used to obtain the best

assignment of agent goal positions in the formation. In the

next section, we describe how we incorporate this informa-

tion into the mass transport solver.

6.2.1 Evaluating Cost to the Goal

In continuum-based crowd simulation [6], the cost for an

agent to travel to its goal is given by an approximation of the

Eikonal equation. This approximation uses a cost metric that

accounts for the environment as well as other agents. We

construct a potential field to determine the cost to travel to

the vertices of the formation mesh, Vf , for a given point in

the environment. In [6], the overall cost for an agent to travel

to its destination is provided by a combination of the length

of the path to the goal, the time taken, and a discomfort field

based on obstacles and other agents in the environment:

�

Z
P

1ds|fflfflfflfflffl{zfflfflfflfflffl}
Path Length

þ�
Z
P

1dt|fflfflfflffl{zfflfflfflffl}
Time

þ �
Z
P

gdt|fflfflfflffl{zfflfflfflffl}
Discomfort

; ð3Þ

where �; �; and � are weights; g is the value of discomfort

at a given point in the environment; and dt and ds mean the

integral is taken with respect to time or path length,

respectively. Readers are referred to [6] for more details on

how the individual values for path length and discomfort in

(3) are calculated. Using the equality ds ¼ fdt where f is

speed, (3) can be rewritten and simplified toZ
P

Cds;where C � �f þ � þ �g
f

: ð4Þ

By applying (4) to a 2D grid of the environment, we can

compute a unit cost field for a given scene. To produce the

final potential field, �, we employ the same approach as [6]

of using the fast marching method [30] to approximate the

Eikonal equation:

kr�ðxÞk ¼ C; ð5Þ

where �ðxÞ is the value of the field at a given point x in the

environment. A potential field �i is constructed for each

vertex vi in the user-defined control mesh Vf . In each case,

�i ¼ 0 in the cell containing vi and everywhere else �i

satisfies (5). An example potential field for a single vertex in

Vf can be seen in Fig. 6. Given an agent’s position in the

environment, Apos, we can retrieve the cost (CApos;vi ) for the

agent to travel to each vertex, vi, in Vf by taking the value at

that location in the appropriate potential field:

CApos;vi ¼ �iðAposÞ: ð6Þ

Due to the discrete nature of the 2D grid, we use bilinear

interpolation to achieve a more accurate reading from �i.

These values can be passed into our mass transport solver to

assign agents an appropriate goal position in the final

formation. Once a point in the mesh is assigned to an agent

their route to the location is computed using gradient descent

on the field. The characters then move to their corresponding

target locations with a simple PD controller. A maximum

speed is defined to avoid unnatural fast movement.
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Fig. 5. Assigning formation goal points based on euclidean distance
(blue arrow) fails to consider the true length of the agent’s path in the
presence of obstacles (green arrow). It is more efficient to assign this
goal point to an agent whose true distance to travel is smaller (pink
arrow). This can be achieved using a cost metric based on geodesic
distance or equivalent in the mass transport solver.



6.2.2 Using Environment Information for an Improved

Cost Metric

In the majority of previous crowd simulation research,
environments consist solely of traversable “free” space or
impassable obstacles. However, in a number of real-life
environments there are certain objects that, while traver-
sable, will affect a person’s speed of travel across them.
Examples of these include low areas through which a
person must crawl or fences/walls over which people must
jump or climb. In this section, we describe how we apply
such an idea to agent planning to produce appropriate
motion in various environments.

The fast marching method [30] is an approach that can be
used to track a moving boundary expanding outwards from
a source point. The concept of a speed field is used to define
the rate at which the front of the moving boundary
propagates. In this way, low values in the speed field can
be used to represent obstacles, while high values can signify
open areas in a scene. We can, therefore, think of this value
as representing the speed at which an agent can travel
through a given point, x, in the environment. For
impassable areas, the travel speed can be considered to be
zero (creating infinitely high cost values) while for open
areas, in which an agent can move freely, the travel speed
can be considered to have a value of one, allowing an agent
to move at their desired speed. Areas that do not permit an
agent to move freely but are still traversable can be assigned
an intermediate value for travel speed. It is also possible
that certain areas of an environment, such as moving
walkways, allow an agent to travel faster than their normal
running speed. We incorporate this idea into the current
framework by rewriting C in (4) to be:

C � �f þ � þ �g
f � TravelSpeedðxÞ ; ð7Þ

where TravelSpeed ðxÞ represents the speed at which an
agent can travel through a given point, x, in the
environment.

6.2.3 Embedding Motion Data in the Environment

By considering environment travel speed in the cost
function, we can easily incorporate a variety of different
motions into agent planning by extracting velocity informa-
tion from motion data. Our method only relies on the
information from the 2D trajectory of a given motion, so it
works equally well with both video tracking and full-body

motion capture data. Given a trajectory we take the average
velocity and use this as the motion’s travel speed value.
These values are then adjusted according to their relative
speed with respect to the running motion data. This gives a
value of one to the motion used for the character moving in
open space and a value relative to this motion for all other
data. Table 1 shows the values extracted from the motion
data used in our experiments. Note that, with this method,
at no point is a value of zero assigned to a piece of motion as
this is used to represent impassable obstacles.

This information can be applied to the scene by creating
“patches.” These patches are represented as 2D polygons in
the scene and contain the motion data file name, ID, and
average speed of the motion. Entrance to a patch is detected
when the agent’s current motion ID switches from the ID
for the running data, used in the open environment, to the
ID given by the patch. When an agent enters a patch, the
motion data ID determines the motion for the agent to carry
out and the average travel speed determines the speed of
the agent as it passes through the patch. The average travel
speed also determines the speed field value in any grid
cells that contain the patch, so that it can be used in (7)
during the planning phase. Examples of these patches, and
how they affect the overall cost field, can be seen as the two
transparent blocks on the right side of Fig. 6. For cyclic
motions such as crawling, ducking, and swimming, patches
can be of arbitrary shape and size however, for single-step
motions such as jumping and climbing, the length of the
patch is constrained by the length of the motion data’s
trajectory. This prevents these actions from inappropriately
executing multiple times in the final render. Additionally,
for the crawling, ducking, and swimming motions, an
appropriate transition motion is applied when it is detected
that the agent enters or leaves the patch.

7 EXPERIMENTAL RESULTS

We have produced scenes showing a group of characters
passing through different static environments including
corridors, woodlands, an obstacle course, and a dynamic
environment where cars are moving around. Each scene
contains open space and obstacles as well as various objects
that the characters can traverse to reach their goal. The
formation of the characters is manipulated in some of the
examples such that they can pass through narrow path-
ways, interact directly with certain parts of the environ-
ment, or produce visual effects. We also show an
experiment that presents the advantage of using the mass
transport solver for mapping each character to a vertex of
the control mesh. The readers are referred to the supple-
mentary video, which can be found on the Computer
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Fig. 6. An example of a potential field produced for a single vertex in the
user-defined control mesh in an environment containing obstacles and
motion data patches. Red indicates a high cost to travel and white
indicates a low cost. The field shown is with respect to the formation
position of the bright yellow agent.

TABLE 1
The Average Speeds Extracted from Motion Data

Used in the Experiments



Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2013.116, for further details. All the
examples were produced starting from a uniform rectan-
gular formation with 36 characters, except the obstacle
course example, which consists of 100 characters.

7.1 Handling Motion Data Patches

Here, we show how characters in the crowd are affected by
motion data patches in different environments. Experi-
ments show how the crowd can handle an arbitrary number
of static or dynamic patches. Our first example involves a
crowd moving through dense woodland, incorporating
several trees modeled by small obstacles. The branches of
the trees overlap with one another and as a result,
characters must duck to pass through (see Fig. 7a). This
motion is represented in the scene by applying appro-
priately sized motion data patches around the base of each
tree. These patches contain the average travel speed from
the ducking motion data used in the final render of the
scene. The characters are able to pass through the small
gaps between each tree while exhibiting a slower travel
speed that resembles the required ducking motion.

In the next example, the characters are controlled to pass
through an environment in which there are multiple
dynamic obstacles (cars) and dynamic patches (mice).
When the cars approach the characters, the characters
automatically avoid them according to the user control and
the potential field produced by the cars (see Fig. 7b). We can
tune the strength of the potential field to adjust the distance
at which a character starts to avoid the obstacles. Further-
more, in the accompanying video, the characters can be
seen to react to the mice with a jump motion when they pass
through the crowd. This reaction is produced by the
movement of the dynamic patches and the effect on the
character’s speed when they interact.

We also produce another example where a larger crowd
passes through an obstacle course with narrow corridors,
walls to climb/jump over, netting to crawl under, and a

pool to swim through (see Fig. 7c). This scene contains a
variety of different motion data patches that allow the
characters to interact appropriately with the environment.
Even in such a complex condition, the characters have no
difficulty moving through the area.

7.2 Defining Crowd Trajectories

In these examples, we show how a user is able to control the
overall motion of the crowd while the low-level interactions
of the crowd are handled by the system. We first show an
example in which characters pass through an environment
containing three separate pathways. Each pathway contains
a different kind of terrain, from top-to-bottom: a net to
crawl under, open space to run through, and a pool to swim
through. A snapshot can be seen in Fig. 8a. The accom-
panying video shows the user specifying the subsets of the
crowd that pass through each individual pathway using a
basic multitouch gesture. Notice that the movement of
individual characters is not defined explicitly by the user.
Instead, based on the formation defined, the characters fit
into the pathways automatically. In each pathway, the
characters move appropriately according to the type of
terrain they are passing through.

In addition to this, we show a similar example in which
characters have multiple paths through which they can
travel (see Fig. 8b). This time, however, the pathways are
narrower than before. The central pathway contains open
space and the two pathways either side have objects that the
characters must climb over. In the accompanying video, the
user performs a gesture to move the entire crowd through
the central pathway. When the central pathway becomes
too congested the characters choose the slower side path-
ways rather than waiting for the central pathway to clear.
The side pathways have become a better choice for
following the formation specified by the user. This example
shows the ability for the system to adapt the character’s
trajectories to best follow the user’s commands.
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Fig. 7. A crowd (a) moving through dense woodland, (b) avoiding large and small moving cars, and (c) passing through a complex obstacle course
area. The crowd is able to interact with many arbitrarily placed objects in the environment by responding to motion data patches in the scene.

Fig. 8. A crowd (a) moving through several pathways containing various terrain, and (b) choosing slower pathways in response to congestion. The
crowd plans an optimal trajectory to follow the instructions of the user while also considering the environment.



7.3 Formation Manipulation

Here, we show examples of the different levels of formation
manipulation in our system that can be used to produce
different visual effects. We first show the system’s ability to
interpolate between different high-level crowd formations
quickly and accurately. We then show how a user can
control various aspects of these formations to carry out
certain tasks.

A set of mesh shapes is registered to define formations
that the crowd can switch between. Some examples of these
formations can be seen in Fig. 9. The user is able to specify
the trajectory of the crowd using the multitouch device and
the crowd’s formation can be switched depending on the
environment. In the current demo, the formation is
switched when the crowd passes over predefined check-
points embedded in the environment however, it would be
reasonable to allow the user to handle this switching either
through a basic button interface or a set of multitouch
gestures. Fig. 9a shows the crowd in an arrow formation
which is effective for passing through a narrow corridor.
This formation can be directly switched to from the original
square formation. The sides of the arrow deform tempora-
rily when the formation is inside the corridor to ensure that
the characters pass through without trouble (see Fig. 9b).
Once through the corridor the crowd can switch back to
their original formation or to another formation entirely,
depending on the user’s requirements (see Fig. 9c). By using
the mass transport solver to assign character’s goal
positions, transitions between different formations occur
quickly and with minimal congestion.

Not only does our system provide easy, high-level
transition between different crowd formations but we also
allow the user to manipulate individual formations directly.
We show an example where the crowd formation resembles
a “Pacman” character. A set of simple gestures can provide
interactive control over multiple aspects of the formation. In
this case, the user is able to translate the formation while
simultaneously manipulating the “Pacman” character’s
mouth. This helps to create visual effects as well as perform
certain tasks, such as collecting items in the environment.

7.4 Mass Transport Solver

In the last experiment, we show examples that clarify the
advantage of using the mass transport solver for guiding
the characters. The characters in a square formation are
supposed to pass around an obstacle and merge again
(see Fig. 10 (Top Left)). Because some of the characters are
prevented from moving by the surrounding characters and

the obstacle for a while (see Fig. 10 (Top Right)), they are late
to arrive to the group. In the case, where the characters are
required to return to their original position in the formation,
they are blocked by the characters that filled in the row in
advance (see Fig. 10 (Bottom Left)). This problem is
particularly challenging in dense crowds where there is not
enough space for the characters to pass through. In contrast,
with our interpolation scheme based on the mass transport
solver, the blocking character simply shifts into the formation
to make room for the late arriver (see Fig. 10 (Bottom Right)).
Notice that the mapping of the characters to the mesh vertices
in the final formation is different from the initial formation.

7.5 User Study

To evaluate the effectiveness of the current system for
interactively moving and defining crowd formations, we
carried out a user study. In the study, we had a total of
15 participants, consisting largely of postgraduate students
all aged between 20 and 35. To compare our system to other
user-control approaches, we implemented a mouse con-
troller based on those found in current real-time strategy
games. This controller included a basic mouse control
interface (see Fig. 12) and the movement of the characters
was determined using the approach in [6]. Participants
were given some practice time to get comfortable with
using the mouse scheme and our proposed multitouch
control scheme. In general, participants spent 1-2 minutes
practicing with each control scheme. Once happy with each
scheme, participants were asked to carry out a number of
tasks to test them. In each task, users were presented with
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Fig. 9. A crowd adapting its formation based on user signals and the environment: (a) an arrow formation is used to pass easily through the corridor;
(b) the crowd formation is affected by the surrounding environment; (c) the crowd can easily transition to a variety of formations; and (d) the current
crowd formation can be easily manipulated to achieve certain tasks.

Fig. 10. Effect of using the mass transport solver: (Top Left) initial
condition, (Top Right) characters caught in the middle; (Bottom Left) the
final state when the locations for the characters are fixed in the
formation; and (Bottom Right) final state when using the mass transport
solver to compute the optimal final locations.



one of four different environments (see Fig. 11). Each of the
environments contained a set of obstacles as well as a
number of collectible items, and users were instructed to
guide a set of characters to collect the items in the
environment in as little time as possible. The position of
the collectible items in the scene was randomized at the
start of each task to prevent any experimenter bias from
their placement. Each environment was presented twice to
the user: once for each control scheme, and the order in
which users tested the control schemes was switched to
prevent any bias from task experience.

In most scenarios, the multitouch controller enables
more efficient collection of items by allowing a user to
move the crowd and manipulate its shape simultaneously.
A comparison of the times taken to complete each task with
the different controllers is shown in Fig. 13. It can be seen
that the time for task completion is reduced in three of
the four scenes when using our multitouch controller (see
Figs. 11a, 11b, and 11c). In fact, for the “Single Block,”
“Corridor,” and “Multiple Paths” environments the multi-
touch controller shows a 35, 16, and 20 percent decrease in
the median completion time, respectively, compared to the
mouse controller. The greater amount of open space in the
“Single Block” environment allowed users to take advan-
tage of the multitouch controller’s simultaneous movement
and shape control capability. In a number of cases the users
were able to expand and contract the group formation
while guiding the agents around the scene resulting in a
large improvement in task completion time. In the “Multi-
ple Paths” scene, participants utilized the mesh interaction
with the environment to divide the crowd into several
pathways at once. This allowed the user to cover much of

the environment with minimal gestures and complete the
task more efficiently when compared to using the mouse.

In the “Four Blocks” scene (see Fig. 11d), the mouse
controller gives a lower average time for task completion.
This highlights a limitation of the current approach: the
crowd must remain as a cohesive whole. With the central
placement of the crowd in the “Four Blocks” scene the best
strategy to collect items is to split up the crowd and send
them to different corners of the environment simulta-
neously, something the mouse controller is able to do more
effectively than our multitouch controller.

In addition to completing the above tasks, participants
were also asked a set of questions with regards to their
experience of each control mechanism. Fig. 14 shows the
average scores given by participants for each of the questions
outlined in Fig. 15. In all cases, both the mouse and the
multitouch control scheme averaged a score of between 3 and
4, with the multitouch control showing a better score in the
question concerning participants’ overall view of the control
scheme. The slightly better score for the mouse control
scheme in questions 1-3 may in part be due to the familiarity
of the participants with using a mouse device. A number of
the participants commented that their experience of using a
mouse device in real-time strategy as well as other games may
have meant that they favored this device implicitly, through
what may be referred to as a “mouse prior.” The multitouch
device, despite being comparably less common than the
mouse, still showed strong scores in response to the questions
and this suggests that such devices are appealing as a method
for interactive crowd control.

We observe that other formation control interfaces, e.g.,
sketching-based [4], [17], utilize a control scheme similar to
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Fig. 11. The initial setup for environments used in the user study. The
positions of the items to collect (small orange blocks) were randomized
for each trial.

Fig. 12. The mouse control interface used in the user study. (a) The user
could select the characters by right-clicking and dragging across them in
the scene. (b) The characters could then be given a goal point by left-
clicking in any open space.

Fig. 13. Box-whisker plot of task completion time for each controller in
four different environments.

Fig. 14. Average scores and their standard deviations of both controllers
given in response to user study questions (see Fig. 15 for the full
questions).



the mouse controller. Such controllers have limited respon-
siveness due to requiring multiple passes to direct a crowd.
This suggests that the multitouch controller would produce
lower task completion times compared to such interfaces,
particularly given the advantages of the multitouch’s single-
pass control shown in this study. This would be interesting to
perform as a follow-up to this study in future work.

7.6 Computational Costs and 3D Rendering

The experiments are run on one core of a Core i7 2.67-GHz
CPU with 1-GB of memory. For the multitouch input, we
used a G4 multitouch overlay from PQ labs, attached to a
2400 Acer S240HL LCD monitor. The computation of the 2D
trajectories that includes the deforming of the control mesh,
reshaping it through its interaction with the environment,
computing of the character destination by the mass
transport solver, and updating their positions are all done
in real time at a rate of �32 frames per second. We found
that with the current unoptimized implementation, frame-
rate reduced to around 8-10 fps at a crowd size of >160
making interactive control of the crowd quite difficult.

The final 3D scene involves computing the movements of
each character. We created a simple locomotion database
with running motions. Based on the planned movement
trajectory, the characters select the optimal motions with a
precomputed search tree [31]. We allow minor adjustments
in the original motion to better fit the movement trajectory,
and apply inverse kinematics to fix the supporting foot on
the floor. The motion planning process is in real time, but
the rendering process is done offline due to the large
number of characters and the lack of rendering optimiza-
tion such as level-of-detail.

8 CONCLUSION AND DISCUSSION

In this paper, we present a novel method for effective user-
guided control of crowd formation and motion in virtual
environments. Currently, formation controls in computer
games are rather basic. In most cases, a group of characters
is moved from one location to another by simple mouse
control. As the dimensionality of the user control is limited,
the only solution is to let low-level character-character or
character-environment interactions be handled by the
system. This work utilizes this idea to allow more refined
control over a crowd’s formation while still keeping the
necessary control signals relatively simple. We have shown

that the user can control the characters in various ways to
move through the environment by subtly changing the way
they control the formation via a multitouch device. We also
enhanced the motion of characters in the simulation by
embedding motion data into the environment in the form of
patches. This motion data is incorporated into the char-
acter’s path planning by including information about the
motion in the cost metric. Our method provides a more
enriching user experience in real-time applications such as
games. A comprehensive user study shows the advantage
of using our method for navigating a crowd through a given
environment and suggests that a multitouch device is a
promising medium through which to provide user control
of virtual crowds. The method is particularly well suited to
applications where group cohesiveness is important, e.g.,
real-time strategy games or social group motion in crowds.

In this work, we have presented actions that either
passively or actively interact with the environment (such
as running and avoiding, or crawling and climbing,
respectively). We would like to extend this approach by
considering motion data involving character-character
interactions. A modified version of the patch-based ap-
proach could enable us to simulate scenes involving
dynamic interactions between characters, such as two
armies fighting [27].

Although agents consider the future motion of dynamic
obstacles in the simulation through use of the method in [6],
we currently do not account for dynamic obstacles when
planning the mesh movement. This choice was made to give
greater control of the mesh to the user. Having the mesh
follow an optimal path rather than that specified by the user
may make the user feel less in control of the crowd and thus
degrade their experience. That being said, an RVO-like
obstacle avoidance mechanism [32] would provide greater
intelligence to the mesh motion, for example, preventing it
from passing in front of moving cars, and consequently
produce smoother motion.

With the current framework, the computational cost of
the MTS imposes a bottleneck on the size of the crowd that
can be controlled interactively. Assigning the position of
groups of agents as opposed to individuals in the formation
would help to alleviate this cost for much larger crowds. A
hierarchical system could be used to assign varying sized
groups to their appropriate positions in the formation.

Finally, as indicated by the user study, the implicit group
cohesion in our method limits the crowd’s ability to
multitask. A future development of this work would
consider approaches for splitting and merging of the crowd
and user specification of subgroups. Alternative methods
for shape manipulation through the multitouch device may
provide fruitful avenues for such research.
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