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Figure 1: Our method offers a high-resolution crack propagation scheme on an explicit surface mesh without the need for adaptively
tetrahedralized input meshes. We achieve this by combining a novel adaptation of the extended finite element method (XFEM), and a
polygon-based cutting algorithm to compute fragments which retain their characteristic ridge-like structures–and sharpness–due to cracks. The
figure shows an impact between a statue of The Winged Victory of Samothrace and a wrecking ball.

Abstract
We present a remeshing-free brittle fracture simulation method under the assumption of quasi-static linear elastic fracture
mechanics (LEFM). To achieve this, we devise two algorithms. First, we develop an approximate volumetric simulation, based on
the extended Finite Element Method (XFEM), to initialize and propagate Lagrangian crack-fronts. We model the geometry of
fracture explicitly as a surface mesh, which allows us to generate high-resolution crack surfaces that are decoupled from the
resolution of the deformation mesh. Our second contribution is a mesh cutting algorithm, which produces fragments of the input
mesh using the fracture surface. We do this by directly operating on the half-edge data structures of two surface meshes, which
enables us to cut general surface meshes including those of concave polyhedra and meshes with abutting concave polygons.
Since we avoid triangulation for cutting, the connectivity of the resulting fragments is identical to the (uncut) input mesh except
at edges introduced by the cut. We evaluate our simulation and cutting algorithms and show that they outperform state-of-the-art
approaches both qualitatively and quantitatively.

CCS Concepts
• Computing methodologies → Physical simulation; Mesh geometry models;

1. Introduction

Realistic depiction of breaking objects is desirable across a range of
computer graphics applications including special effects, computer
animation and video games. The breakage of 3D models can be
mimicked either manually via tedious artistic specification or using

† Floyd M. Chitalu and Qinghai Miao are joint first authors.

automatic algorithms. The latter can be classified into methods that
exploit heuristics [SSF09; MCK13] and those that compute physical
simulations of the mechanics of fracture. Simulation methods typi-
cally have origins in engineering and are therefore designed to be
accurate for targeted applications. Adapting them to suit computer
graphics applications often requires overcoming challenges such as
reducing computational cost and generalizing to realistic boundary
conditions [HW16] as well as providing controllability [CYFW14].
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Despite the effort of computer graphics researchers, existing
techniques still suffer from either scalability, stability or realism
problems for simulating the propagation of crack surfaces on ar-
bitrary shapes. Classic finite element method (FEM)-based ap-
proaches [OH99] require conforming the domain mesh to the crack
surfaces by re-meshing, which poses several challenges when treat-
ing evolving fractures. To avoid the cost and instability caused by
re-meshing, some methods operate on particle systems [PKA*05;
SSC*13; WFL*19]. These meshless methods introduce difficulties
with respect to enforcing essential boundary conditions, compu-
tational cost and overall rigidity of computed fragments. Bound-
ary element method (BEM)-based methods use surface representa-
tions [HW15; ZBG15; HW16]. In contrast to other discretization
methods (e.g. FEM), these methods involve singular integrals which
can be prohibitively expensive to solve and are restricted to ma-
terials characterised by large volumes. Also, they are not readily
able to seed cracks on the interior due to their boundary integral
formulation.

The extended finite element method (XFEM) [MDB99; Dol99;
DMD*00] is proposed for decoupling the simulation mesh from
the crack surface: however, prominent methods that represent the
crack surfaces by level-sets require using high resolution simulation
meshes for simulating detailed crack surfaces. Also, tracking the
dynamic propagation of the crack surface by level sets is inherently
difficult.

In this paper, we present an efficient brittle fracture simulation
method in high resolution and without any requirement on the sim-
ulation mesh. In this method, we combine XFEM with a high-
resolution crack propagation scheme on an explicit surface mesh,
resulting in efficient framework for brittle fracture. Our method
allows for handling crack propagation without re-meshing (chang-
ing the simulation mesh) or using crack-tip enrichment, which has
several advantages including reducing the number of degrees of
freedom (DOF). Using a volumetric setting, we can simulate brittle
fracture on a broad range of domains and accommodate spatially
varying material parameters to control fracture. To represent a crack
we adopt an explicit approach which can simplify the procedure
to propagating the crack surface within the volumetric domain. To
cope with the geometric operations of cutting meshes, we propose a
novel algorithm that extends the approach by Sifakis et al. [SDF07]
but copes with concavities, without needing triangulation.

We simulate results showing detailed and realistic fracture of
multiple brittle objects colliding and breaking into small pieces
(see Fig. 1, and § 7). Our method also allows animators to control
the breakage by biasing the toughness within the domain, and to
control the distinctive look sought from real-world materials in a
simple fashion. The generality of our cutting algorithm makes it
applicable to a wide number of use-cases. It is a simple and robust
approach to perform various operations (e.g. boolean operations) on
open and closed surfaces, making it useful for cases within–and even
beyond–the scope of immediate application. Further, as we seek to
minimise numerical operations for mesh extraction, our algorithm
resolves all mesh connectivity using only combinatorial structure
except when computing polygon intersections.

Fig. 2 provides a visual overview of existing approaches. Our
contributions may be summarized as follows:

• A novel quasi-static brittle fracture simulation method on the
basis of XFEM but without crack-tip enrichment, and
• a general and suitably robust implementation for explicit surface

mesh cutting, using arbitrary polygonal subdivisions.

2. Related Work

In this section, we first review methods for simulating fracture and
re-meshing in computer graphics. Next, we briefly review XFEM as
presented in engineering literature. Finally, we review methods for
tackling the challenging task of mesh cutting, which is common in
fracture simulation.

Fracture Simulation in Computer Graphics: Physically-based
fracture is a well studied problem in computer graphics, stemming
from the seminal work by Terzopoulos et al. [TF88]. Early ap-
proaches proposed mass-spring systems to model brittle fracture
with stress-based yield thresholds [NTB*91; ADKK04]. However,
visual artifacts were common due to spring removal and repre-
senting crack surfaces was non-trivial. Approaches based on FEM
have had wider success [OH99; O’B02; SWB01; PO09; KLB14;
BHTF07; MG04; MMDJ01]. The earliest of these used nodal stress
analysis to perform planar fracture for brittle and ductile material set-
tings [OH99; O’B02]. O’Brien and Hodgins [OH99] introduced brit-
tle fracture with FEM which was later extended by others [BHTF07;
KLB14; MG04]. Bao et al. [BHTF07] also present a method for
simulating both brittle and ductile (denting) fracture. A real-time
method for brittle fracture is presented Parker and O’Brien [PO09]
which is based on O’Brien and Hodgins’ method [OH99] but with re-
finement procedures to ensure that the meshes stayed self-consistent.
Glondu et al. [GMD13] also present a real-time approach with FEM,
using modal analysis to handle crack initiation and an energy-driven
algorithm for fracture propagation on implicit surfaces.

Re-meshing is frequently used in FEM simulation to handle high
stress distributions accurately; align tetrahedral meshes with cracks;
or to simply overcome fracture resolution constraints. Wick et
al. [WRK*10] use dynamic local mesh refinement (and coarsening)
to repair degraded tetrahedra, while Chen et al. [CYFW14] handle
remeshing based on gradient descent flow to enhance fracture reso-
lution and detail. Koschier et al. [KLB14] also present an adaptive
subdivision scheme to facilitate cutting during fine breakage on the
basis of the virtual node algorithm (VNA) [MBF05].

The challenges of topological discontinuities via re-meshing can
be addressed through methods such as Discontinuous Galerkin FEM
(DGFEM) [KMBG08] which requires moving-least squares interpo-
lation. The material point method (MPM) has also been used with
level sets to simulate brittle and ductile fracture [HJST13; WFL*19].
Though impressive, MPM may preclude the ability to represent of
infinitely sharp features, and with difficulties handling rigid shat-
ter effects. XFEM embedding [KMB*09] improves accuracy but
imposes limits on the fracture geometry. It scales poorly with the
resolution of the fracture surface. Richardson et al. [RHS*09] also
present a crack propagation scheme which uses a finer mesh for
integration purposes and a geometric mesh cutting tool [SDF07]
for full XFEM enrichment but in 2D. A related extension to 3D
is described by Koschier et al. [KBT17] (see also Jeřábková and
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Figure 2: An illustrated comparison of relevant work.

Kuhlen [JK09]) but using only Heaviside enrichment to simulate
the dynamics of meshes with cuts, since specifying of crack-tip en-
richment is non-trivial in 3D. Their work also does not address the
generation or propagation of fracture, so the cuts are pre-specified.

Some methods simulate fracture with surface meshes. For ex-
ample, Pfaff et al. [PNJO14] capture the tearing of thin sheets by
solving the elasto-plastic equations on a triangulated finite element
mesh. Zhu et al. [ZBG15] simulate brittle fracture based on a bound-
ary integral formulation of elasticity combined with mesh evolution
and a rigid body solver from which contact forces are extracted
as Neumann boundary conditions. Hahn and Wojtan [HW15] simi-
larly adapted BEM for computing stress on surfaces with spatially
varying fracture parameters to produce interesting effects. They esti-
mate stress intensity factors (SIFs) along crack fronts and use these
for crack propagation. Their method simulates fracture on a coarse
crack surface accompanied by an implicit surface to address the
poor scaling properties of BEM due to singular integrals.

XFEM in Engineering: Classical FEM requires adaptive meshing
to handle evolving discontinuities in the simulation domain, such
as in the case of fracture. XFEM was first introduced by Moës et
al. [MDB99] to address this limitation by introducing discontinu-
ities in the interpolation functions, thereby allowing the simulation
mesh to remain unchanged (see also Belytschko and Black [BB99]
and others [Dol99; DMD*00]). Mousavi et al. [MGS11] present a
method to handle multiple intersecting cracks using generalized har-
monic enrichment functions but in 2D, which is based on the work
of Kaufmann et al. [KMB*09]. XFEM has also been used to model
fatigue crack propagation in 3D using planer cracks [SMMB00;
SCM03] and curved surfaces [PDGJ09].

Cracks in XFEM were previously modelled purely with implicit
level set functions [SCMB01]. However, these introduced a tight
coupling between the resolution of the simulation mesh and the
crack surface, precluding a general ability to incorporate fine de-
tails. Alternative explicit mesh-based representations of the crack
surface have been explored [SCM03; PDGJ09], along with adaptive
refinement to accommodate varying propagation speeds along the
crack front [GODB13]. These explicit methods are able to model
fracture surfaces more realistically and, during crack propagation,
it is simpler to update a crack-surface mesh than to update level
sets [GODB13; RG17]. Notably, explicit methods also require com-
plicated computational geometric operations between the crack sur-
face and the simulation mesh, which we address. On this surface,

an approach akin to Fries and Baydoun [FB11] is used: Fries and
Baydoun propose a hybrid approach that combines the benefits of
explicit and implicit representations by inducing the level function
using the explicit crack mesh to enrich elements. § 3 presents a
review of FEM and XFEM. We refer readers to a textbook [Kho15]
for a more thorough treatment.

Mesh Cutting: We refer to cutting as the process of splitting a
mesh into two or more components based on its intersection with a
specified cutting surface. One class of algorithms applies piecewise-
linear cuts [MBF05; TSB*05; WJST14; KLB14; PUC*15]. These
algorithms use volumetric decomposition and duplicate vertices
along predefined element faces that are most aligned with the cutting
surface. These methods are relatively simple but are computation-
ally costly for complex cut patterns [PUC*15; KLB14]. Since they
operate using volume-refinement or regular grids [DGW11; JRC14],
they suffer from lack of volume preservation and loss of mesh-scale
detail [WJST14].

Mesh evolution algorithms can overcome piece-wise linear cut-
ting limitations given their ability to preserve volume, mesh-
scale detail, and sharp features [WMFB11; DBG14]. However,
these are not directly applicable to fracture. For example, Da et
al. [DBG14] present a multi-material triangle mesh-based surface
tracking scheme for evolving interfaces which has been used for
fracture simulation by Zhu et al. [ZBG15] but with significant mod-
ifications for tracking the crack surface. Sifakis et al. [SDF07] also
describe a method to cut tetrahedralized meshes with arbitrary in-
cisions, along with novel edge placement rules for reconnecting
topology. The method works well but omits details for polygon clip-
ping (“boundary tracking”), and assumes a tetrahedral representation
making it applicable only to triangulated meshes.

A third class of approaches converts polygonal meshes to an in-
termediate sparse voxel representation (e.g. OpenVDB [Mus13])
for cutting, before re-triangulation. These require multiple repre-
sentations of the cutting surface and are useful when the resolution
of the cutting surface affects simulation performance as seen in
BEM [HW15]. Voxel representations are also used when rendering
meshed particles but may require trade-offs between surface smooth-
ness and sharpness [WFL*19]. A notable advantage of sparse voxel
representations is their robustness against numerical error when
resolving intersections by using level sets. Conversely, mesh based
approaches can be susceptible to unexpected failure from numerical
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error if not handled carefully (see e.g. Zhou et al. [ZGZJ16], Wang et
al. [WJST14], and Bernstein and Fussell [BF09] for discussions).

We refer readers to Wu et al. [WWD15] for a survey on mesh
cutting.

3. Review: FEM & XFEM

In this section, we briefly describe the derivation of XFEM on the
basis of classical FEM. A similar notation to Khoei [Kho15] and
Sukumar [SMMB00] is used, to which we refer interested readers
for details.

Problem: Consider a body of linear elastic material occupying a
domain Ω⊂ R3 and subject to loading f . Under static equilibrium,
in the absence of tractional forces, it can be derived that

O ·σ =− f , (1)

subject to boundary conditions. Here, O· denotes the divergence
operator and σ is cauchy stress which is a function of displacements
u(x),x ∈Ω. The goal is to find a function u(x) which satisfies the
differential equation and boundary conditions.

3.1. FEM Approximation of Linear Elastic Mechanics

FEM reformulates the above strong form of the problem as a set of
algebraic equations (via a weak form) that can be solved numerically.
The key difference is that it focuses on finding an unknown vector
of displacements u rather than a continuous function. The function
u(x) is then obtained from the vector using relevant interpolation
functions known as shape functions. The choice of shape functions
depends on the discretization of Ω into elements, and results in a
system of algebraic equations.

Assuming each element is a linear tetrahedron e specified by
nodes (vertices) and the displacements at the nodes are ue, the
interpolated displacement at x ∈ e is

u(x) =
4

∑
i=1

Ni(x)ui
e (2)

where Ni is the shape function of node i which has displacement ui
e.

Strain and stress are constant in e:

εe(x) = Beue; σe(x) = De εe(x). (3)

Here Be is the discretized gradient matrix which contains the partial
derivatives of the shape functions and De is the elasticity matrix
which encodes material properties.

By the principle of virtual work, variations in internal work must
equal variations in external due to boundary constraints (cf. Eq. 2.66
in [Kho15]) which gives the following linear system within each
element

Keue = fe where, Ke ≡
∫
e

Bᵀ
e DeBe dx, f≡

∫
e

Nᵀte dx. (4)

Thus, Ke is stiffness matrix obtained from material properties and
fe is obtained from external forces te (boundary conditions) acting
on the element. For simulating a mesh with many elements, the
element-wise Ke from all elements are carefully assembled into

a global sparse linear system K to solve for all unknown nodal
displacements u.

In the presence of fracture, displacements are non-smooth within
elements e intersected by the crack. FEM addresses this problem by
aligning the elements with the discontinuity (crack surface). This
requires remeshing which needs special care but also results in a
larger K for high-resolution crack surfaces (more DOFs).

3.2. XFEM for Simulating Fracture

XFEM copes with cracks running through elements by enhancing
the approximation space independent of the elements. (Here we
consider only extrinsic enrichment where more shape functions
and unknowns result in the approximation, while operating on the
same mesh elements). An element that is cut by a fracture surface
may either be completely split or contain the crack-tip within its
volume. The former results in a strong discontinuity while the latter
leads to singularities in the near-field displacements. The enriched
interpolation

uenr
e (x) =

m

∑
i=1

Ni(x) ui + ϒhev(x) + ϒtip(x), where (5)

ϒhev =
m

∑
i=1

Ni(x) (Ψhev(x)−Ψhev(xi)) ai, and (6)

ϒtip =
m

∑
i=1

4

∑
k=1

Ni(x) (Ψtip(x)−Ψtip(xi)) bk
i . (7)

sums over all m nodes of the element. For a tetrahedron, m = 4.
Ψhev(x) is the Heaviside (step) function which decouples field quan-
tities (e.g. displacement) on both sides of the crack passing through
the element. Ψtip(x) are asymptotic solutions [Wil61] which are
specifically chosen in order to capture singularities. ai and bk

i are
vectors of added degrees of freedom (DOF) controlling the enrich-
ment. Thus, rather than solving for ue (as in FEM) within each
element, the new system Kenr

e uenr
e = fenr

e has additional unknowns:

uenr
e =

[
uᵀ

e aᵀ
]ᵀ or uenr

e =
[
uᵀ

e bᵀ
1 bᵀ

2 bᵀ
3 bᵀ

4
]ᵀ

, (8)

depending on whether the nodes are Heaviside enriched or crack-tip
enriched respectively. The number of rows in the global, square
system matrix K increases from 3n (in 3D) to 3(n + ns) in the
case of Heaviside enrichment and to 3(n+ ns + 4nt) in the case
of Heaviside and crack-tip enrichment. Here n is the number of
nodes in the mesh, ns is the number of nodes on elements with a
complete crack passing through them and nt is the number of nodes
on elements containing crack front. In general, ns + nt � n since
only the elements intersected by the crack surface are enriched.

4. Method Overview

An overview of our method is illustrated in Fig. 3. Starting from
a (detailed) surface mesh, we first convert it to a lower-resolution
mesh to accelerate simulation and collision detection (see § 7), and
then construct a tetrahedral mesh for XFEM.

With the tetrahedral mesh, we perform simulation by applying
given boundary conditions and computing displacements and stress
as in standard XFEM. We simulate crack growth by emulating the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chitalu et al. / DC-XFEM for Simulating Brittle Fracture

input

force

displacement strain stress

crack init.

crack surfacecutting

output crack 

propagation

surface 

meshes

vol. meshing novel

+ XFEM

+ crack sim.

+ cutting

Our method

Figure 3: Illustrative summary of the different stages of our method.

existence of singular “crack-tip stress”, correlating finite element
displacements with crack-tip displacement equations in elements
containing the crack front (§ 5.2). Thus, crack initiation and propa-
gation can be handled separately (§ 5.3) as in linear elastic fracture
mechanics (LEFM). Since we operate directly on an explicit surface
mesh, our crack propagation algorithm proceeds as shown in Fig. 6,
extending crack front vertices according to the strain energy release
rate. We make use of an induced signed distance function by inter-
secting elements with our explicit crack surface mesh to evaluate
enrichment functions–which we do after each propagation step.

Finally, we compute the disconnected mesh fragments using the
generated explicit crack surface and the high detail mesh - for visu-
alisation and further simulation (§ 6).

5. Displacement-Correlated XFEM

Assuming an unfractured object, boundary conditions, and a finite
element mesh such that we can assemble global matrix K and vector
u, we describe in § 5.1 how to add a crack to this system while using
only Heaviside enrichment (Eq. (6)). The dynamics of fracture in a
quasi-static and volumetric setting are then presented in § 5.2, which
we use to calculate our fracture-mechanical loading parameters. We
then describe our crack mesh representation and the steps to initiate
a crack, and compute crack-front motion using the computed loading
parameters in § 5.3.

5.1. System Equations

In XFEM, the crack is represented by two types of enrichments, ϒhev
and ϒtip, which capture strong discontinuities in the displacement
field and stress singularities respectively. Creating additional DOFs
is the common property of these types of enrichments. However,

treating these enrichments simultaneously when formulating XFEM
is challenging: In addition to being cumbersome to implement, the
accuracy of crack-tip enrichment is limited in 3D as existing meth-
ods (which rely on 2D crack-tip parameters) require the stiffness
matrix and force vector to be expanded arbitrarily to account for the
extra unknowns. Accuracy further suffers from the lack of a clear
definition of ‘normal to the crack front’ for points further away from
the crack front. Another drawback is the introduction four times
the DOFs compared to Heaviside enrichment (48 compared to 12)
while performing extrinsic enrichment.

One possible way to circumvent this issue is intrinsic XFEM
[FB06] which replaces the element shape functions by special ones
with no additional unknowns to capture non-smooth solutions. This
method, however, requires careful treatment of enriched moving
least-squares functions near discontinuities as well as special weight-
ing functions.

We propose a simpler displacement correlated XFEM on the
basis of the extrinsic formulation but we reduce the system to only
requiring Heaviside enrichment. We capture strong discontinuity as
per Heaviside enrichment, but correlate analytical expressions for
crack-tip displacement with numerically obtained smooth solutions
to estimate stress intensities. A fracture can still be represented by a
single sheet of triangles. Using this surface, the weak form of the
linear elasticity equations (cf. Eq. 2.58 in [Kho15]) is applied after
dropping the (zero) surface traction term. The reduced global system
is [

Kuu Kua
Kau Kaa

]{
u
a

}
=

[
fu
fa

]
, (9)

which we evaluate using standard quadrature, with subdivision
to integrate enriched elements (we refer readers to Koschier et
al. [KBT17] for a more accurate technique which does not require
sub-division to integrate enriched elements). The equations for each
block are given in the Appendix. Enrichment means that the blocks
Kua, Kau, and Kaa as well as the unknown vector a will grow with
each new element that is cut, but the size (and structure) of Kuu and
u remains unchanged.

To resolve the issue of estimating stress intensities without crack-
tip enrichment, we simply require that crack-front vertices have a
reference element in which they reside (see § 5.2). Thus, there are no
unknowns introduced at the crack front but we add DOFs according
the elements completely cut by the crack.

5.2. Fracture Dynamics

We now describe how finite element displacements (from Eq. (9))
near the crack front are used to emulate singular stress fields as in
LEFM. This formulation allows us to propagate the crack using the
strain energy release rate similarly to Hahn and Woltan [HW15],
which is ideal for treating crack initiation and propagation separately
(cf. § 5.3).

Stress Intensities Near the Crack Front: Using the displacement
u computed by solving Eq. (9), we can calculate stress and thus
stress intensities near the crack front for propagation. We adopt
the displacement method [CTW70] to estimate stress intensities by
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correlating computed displacements with known crack-front dis-
placement equations. These equations are evaluated at a location
xΓ(r, θ) which is on the crack face. This location is called the corre-
lation point, where r and θ are polar coordinates which are defined
relative to the crack front (cf. Fig. 4).

Given xΓ(r, θ), the analytical displacement equations near the
crack front are defined by

u∗1 =
KI

2µ

√
r

2π
gI

1(θ)−
KII

2µ

√
r

2π
gII

1 (θ)

u∗2 =
KI

2µ

√
r

2π
gI

2(θ)+
KII

2µ

√
r

2π
gII

2 (θ)

u∗3 =
2KIII

µ

√
r

2π
gIII

3 (θ), (10)

where u∗i=1,2,3 are the displacement components at xΓ(r, θ), and µ is
the shear modulus. KL=I,II,III are the stress intensity factors (SIFs)
which characterise the stress singularity - each corresponding to a
crack loading mode shown in Fig. 5. Finally, gL

i (θ) are the angular
functions (see Appendix), which describe the near-tip stress change
along the circumference direction.

r

θ x1

x3

x2

Crack front

xⲅ

Figure 4: Coordinate
system perpendicular
to crack front.

Eq. (10) can be further simplified
from which corresponding expressions
for KL=I,II,III can be determined. This
is because SIFs are evaluated on the
crack face and relative to the crack
front, which is the location of crack
opening where θ = π (cf. Fig. 4). Thus,
for crack geometries with pure mode-I
loading, crack front displacements re-
duce to

u∗2 =
1
2µ

√
r

2π
KIg

I
2(θ). (11)

The corresponding SIF is determined via conversion to give

KI = 2µ

√
2π

r
u∗2

gI
2(θ)

, (12)

which is the simplest method to determine KI . Extending to pure

Mode-I 
(Opening)

Mode-II 
(In-Plane Shear)

Mode-III
(Out-of-Plane Shear)

Figure 5: Arrows: Loading modes; Shaded: expected propagation
behavior ([Irw57]). Mode-I opens the crack perpendicular to the
crack plane and makes it propagate forward due to the applied
tensile loading. In Mode-II, the crack faces are displaced on their
plane, normal to the crack front. For Mode-III, the crack is displaced
on its ’plane’, parallel to the crack front.

mode-II and mode-III loading for KII and KIII , we have

[KI KII KIII ] = µ
√

π

2r

[
u∗2

(2−2ν)

u∗1
(2−2ν)

u∗3

]
, (13)

which describes how we compute the SIFs that we use for crack
propagation. The expressions for KII and KIII in Eq. (13) are derived
by applying similar interpretations as KI but using gII

1 with u∗1 , and
gIII

3 with u∗3 in Eq. (11) and Eq. (12) respectively. The solution is
simple, fast and sufficiently accurate for our purposes even though
more accurate methods exist (e.g. J-integral method [IW03]).

Virtual Crack Opening Displacements: In practice, evaluat-
ing Eq. (13) is dependent on the relation between u∗i and the solution
u (from Eq. (9)), which we now describe.

We can–for a moment–assume that the crack has already been
initiated (as described in § 5.3), since Eq. (13) is given on the basis
of the existence of a crack. Thus, let xΓ = xΓ(r, θ): then, given xΓ we
compute u∗i from u by exploiting polynomial approximations on the
element e containing xΓ as interpolated nodal displacements ue(xΓ),
which we get using Eq. (2) after solving the linear system in Eq. (9).
The location xΓ is given near the boundary of the crack mesh (e.g. a
point along interior dashed blue line in Fig. 6, right). Finally, we
project ue(xΓ) onto the local orthonormal basis at the crack-front
(cf. Fig. 4). A disadvantage of this approach is the assumption
that the interpolated displacements are representative of the crack
opening displacements which leads to a loss of symmetry properties
when all three modes I, II, and III are superimposed. However,
we believe that the simplicity of this formulation outweighs the
drawbacks since it results in fewer DOFs due to enrichment while
still retaining the advantages of explicit XFEM.

5.3. Crack Initiation and Propagation

Having described how we compute fracture loading parameters from
finite element displacements, we now provide the details of how
a crack is initiated, and propagated using the loading parameters
from § 5.2.

Crack Mesh Initiation: During XFEM, a crack is initiated accord-
ing to a fracture criterion based on the Rankine condition - brittle
material fails if the maximum principal stress exceeds material
strength

σmax ≥ σcritical.

Crack initiation and its location are determined as follows: First,
we calculate the nodal displacements followed by stresses in all
elements. Then, eigen analysis is computed on each element’s stress
tensor to find direction of maximum tensile (or compressive) stress
by comparing based on the largest magnitude.If the Rankine con-
dition is satisfied, we then create an initial mesh at the element
centre.

A 3D crack surface is represented by an explicit mesh which we
initially create as a single sheet of triangles spanning a circular disk
(other types of meshes are also possible e.g. rectangular mesh, which
was in Fig. 10). We create and align this mesh to be orthogonal to
the principal stress direction (tensile or compressive) such that it is
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inline with expected crack propagation direction. Disk diameter is
scaled according to element size, but may be set manually e.g. as a
fraction of the domain’s bounding box diagonal to control resolution.
Since all the triangles of this disk mesh are vertex adjacent, each
forms part of the initial crack front which will be propagated via
their shared correlation point.
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Figure 6: Crack mesh extension: Triangles T 1-T 4 form the current
crack front (dashed blue line, left and middle). We extend two ver-
tices for each triangle along the crack front, and then combine the
extended points (red) or insert new ones e.g. v4 (green) according to
the new edge length. Finally, we build triangles forming new crack
front T 5–T 9 (solid blue line, right).

Crack Mesh Propagation: Propagation of the crack front occurs
according to the strain energy release rate [And05] where the crack
propagates iff K∗ > Kt , where

K∗ =

√
K2

I +K2
II +K2

III
(1−ν)

and, Kt =

√
2γE

(1−ν2)

are the effective stress intensity and material toughness. γ is the
surface energy, E is Young’s modulus and ν is Poisson’s ratio of
an element incident to the crack-front. We calculate the propaga-
tion speed and direction at crack front vertices similarly to Hahn
and Woltan [HW15] (see also [PM07]), but in a volumetric set-
ting to propagate the fracture surface mesh. Propagation speed
s = cR(1−K∗/Kt) is the linear approximation of the upper limit of
the Rayleigh wave speed cR ≈ 0.57

√
E/ρ [Kun13], where ρ is the

material density. We compute the propagation direction by

θ = 2atan
[(

KI,III−
(

K2
I,III−8k2

II

) 1
2
)
/4KII

]
.

Starting from the crack front triangles, we extend the crack mesh
during propagation as follows (cf. Fig. 6, left): Given a triangle,
e.g. T 2, we copy and extend its two vertices which belong to the
current crack front - creating new temporary points e.g. p21 and
p22. For convenience, vertices are extended on a triangle-by-triangle
basis, so each crack front vertex will have two temporary copies
which we later merge (see below). Crack front vertices are extended
according to the propagation speed and direction.

To compute the connectivity defining the new crack front, we first
merge temporary points, which ensures well-shaped triangles in the
generated mesh. We merge pairs of temporary points that are copies

of the same vertex which is on the current crack front e.g. p11 and
p22 (cf. Fig. 6, left). Merging produces new vertices like v1 which
we compute simply as a mid-point (cf. Fig. 6, middle). After merging
all paired points, we then add edges connecting adjacent mid-point
vertices to form the new crack front geometry. Extra vertices may
be added in this step to split the new edges if their length exceeds a
given threshold, e.g. twice the crack front edge size in the initial disk
mesh. Finally, we construct triangles to extend the crack surface by
connecting the new crack front geometry (cf. Fig. 6, right, T 5–T 9).

6. Mesh Cutting

In this section, we describe our novel cutting algorithm that can be
applied to arbitrary planar polygons for representing surface meshes
to alleviate requirements for explicit triangulations or volumetric
decompositions to cut domains. The algorithm is a practical solution
to the problem of resolving complex intersections between meshes,
which is a nuisance to implement. The method is particularly at-
tractive as it also generalises to a number of topological settings
(e.g. two-dimensional cuts and even boolean operations) enabling
use-cases which are within–and even beyond–the scope of imme-
diate application. In practice, we use this method to cut elements
for enrichment, as well as cutting arbitrarily-shaped surface meshes
which define the domain to obtain new fragments for simulation and
rendering.

Overview: The input to our cutting algorithm is a pair of mesh data
structures for an objectM and a crack surface C. The output is a
set of mutually exclusive fragment meshes which are a result of the
cut. In our implementation, we make the simplifying assumptions
that both meshes are composed of simple polygons (which can be
concave); and that improbable cases like the intersection of two
edges or a vertex intersecting a plane are extremely unlikely. An
illustration of the pipeline in 2D is shown in Fig. 7: we use a 2D
illustration since it is difficult to visualize the effect of operations
on 3D meshes in a static figure.

Our algorithm can be implemented using any standard mesh data
structure, (e.g. vertex-face adjacency list) but the halfedge mesh is
most convenient since it supports maintaining incidence information
of vertices, (half)edges and faces. For convenience, we resolve all
intersections and connectivity in one polygon soup (cf. Fig. 7 (a)).

Intersection Points: We calculate intersection points by testing
the halfedges of each polygon in M against each polygon in C
using standard point-in-polygon tests [Hai94] (cf. Fig. 7 (b)). Our
mesh vertex coordinates are assumed to be rational coordinates,
thus intersection points are computed exactly, similarly to Zhou et
al. [ZGZJ16]. In general, we impose no restrictions on the numerical
representation of intersection points, so static filtered floating-point
predicates can also be applied using the binary space-partition view
as in [BF09], with some consideration for concave polygons (see
also [She96]).

Once computed, we insert intersection points into the mesh data
structure of the polygon soup and maintain a list of points that reside
on each intersecting polygon. In practice, we speed up this process
with a bounding volume hierarchy (BVH).
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(a) (b) (d) (e)(c)

Figure 7: Our cutting algorithm consists of four different stages (b-e). We test all pairs of intersecting polygons (using a bounding volume
hierarchy) and insert intersection points, as well as edges between these points, into a half-edge data structure. Then, we traverse all edges in
the data structure, duplicate nodes when required and update edges to these nodes.

Edge Identification: We identify edges by connecting the intersec-
tion points of each pair of intersecting polygons betweenM and C
(cf. Fig. 7 (c)). If exactly two intersection points result from a pair
of intersecting polygons then we simply connect them, otherwise
we sort and connect them according to the order of their coordinates.
Since the intersection points are guaranteed to be collinear (the
polygons are planar), we add edges consecutively in the order of
the computed connectivity. We also identify edges between points
which lie on the same edge from the original mesh ofM (and C)
while ensuring that we create a minimal set of non-overlapping
edges as described above.

Polygon tracing and halfedge transformation: Once new edges
are created, we trace the boundaries of new polygons which are
coincident to intersection points (cf. Fig. 7 (c)). The new edges
are used to clip intersecting polygons: For each intersected poly-
gon inM and C, we collect all edges whose defining vertices co-
incide on this polygon to trace halfedge loops which define the
new polygons. Our approach is analogous to boundary tracking
(e.g. the directed-body concept [IH92]) but we use only the gathered
(half)edges and without numerical floating-point operations. Thus,
our solution encorporates Sutherland-Hodgman [SH74] and Weiler-
Atherton [WA77] polygon clipping under a single representation
and in a three-dimensional setting.
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Figure 8: The intersection points (grey) due to a vertical cut (grey
line) of two concave polygons (blue), are shown along with all half-
edges (arrows). All new half-edges (black) are traversed sequentially
to determine whether duplicate vertices are required.

GivenM and the new edges along its cut surface, we identify
which intersection points need to be duplicated so that they appear
on exactly two sides to partition resulting fragments (refer to Fig. 8).
For this, we iterate through all half-edges h inM which are from

the newly inserted edges, and process them individually using the
following three conditions: 1) If h is incident on a vertex v and
another halfedge on the same side as h (across the cut surface) and
incident on v has been ‘processed’, then we update the connection
of h to the correct instance of v so that it matches the other halfedge.
2) If this is not the case, we check if another halfedge connected
to v on the opposite side of h (across the cut surface) has already
been ‘processed’, in order to duplicate v. 3) If neither of the first two
conditions are satisfied, then we leave h as is. Finally, we mark h as
‘processed’ and repeat the process on next halfedge of h. In practice,
we traverse through halfedges one polygon at a time.

Sealing: Since the cutting is performed on a (hollow) surface
mesh, the fragments ofM will not be closed just yet. For exam-
ple, Fig. 9 (b) shows the bottom fragment of a cube cut by an
elliptical mesh. The resulting fragment is a cuboid without the top
face. To fix this, we construct polygon patches (similarly to Zhou et
al. [ZGZJ16], and Mei and Tipper [MT13]) which are used to seal
the fragments ofM. A patch is constructed as a set of adjacent poly-
gons from C, which is bounded by a closed sequence of halfedges
forming an oriented loop and passing through intersection-points.
We start from any new polygon in C which is coincident to at-least
two intersection points and use breadth-first search (BFS) to iden-
tify all patch-polygons. During BFS, we build a patch iteratively
by adding adjacent polygons using a queue data structure. Two
polygons are adjacent if one of them contains a halfedge whose
opposite is in the other polygon. Once constructed, a patch is then
duplicated to create a copy whose polygon winding order is reversed
(e.g. clockwise).We then stitch each patch by matching its bound-
ing halfedges with the border halfedges of each fragment ofM –
inserting patch polygons one-at-time as shown in Fig. 9 (d). The
final polygon-soup contains multiple mesh fragments as connected

int. points no face clipped 

polygons

patching sealed face

(a) (b) (c) (d) (e)

Figure 9: Stitching the polygons of a cut-surface patch to a con-
nected component of the input-mesh (cube).
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components (cf. Fig. 7 (e)) which we determine using standard BFS
routines.

7. Results and Discussion

We present our results in this section. We show our fracture simu-
lation results in § 7.1 and compare with related work (see accom-
panying video). Additional mesh cutting results are then shown
in § 7.2.

Implementation: We visualize fragments using high detail but use
lower resolution/simplified meshes to speed up simulation, tetra-
hedralization and mesh preprocessing for collision detection. The
lower resolution meshes are created using standard edge-collapse
[LT98] which is implemented with CGAL [Cac19]. Tetrahedral-
ization is done with TetWild [HZG*18] and the high-resolution
fracture surfaces are simulated in the generated tetrahedral mesh.
We enrich elements and cut the high-resolution meshes with our
cutting algorithm which is implemented in C++ using the Sur-
face_mesh data structure [SB12]. All results are rendered using
Blender [Com18]. Rigid body dynamics are implemented with Bul-
let [Cou15], using VHACD [MG09] for convex decompositions to
improve the robustness of collision detection.

Our Dirichlet boundary conditions are specified similarly to
Müller et al. [MMDJ01]. Impact forces are computed at discrete
collision events, where we treat objects as if they are anchored
and proceed to compute their static equilibrium response using
XFEM. We transfer impulses from Bullet similarly to Hahn and
Woltan [HW16] (see also [GMD13]), based on the Hertz model and
mapping collision points to the closest element in the XFEM mesh.

7.1. Fracture Simulation

We now show our fracture simulation results in this section. First,
we show results for reproducing standard benchmarks and evaluate
against expected crack propagation behaviour according to LEFM.
We then show simple adaptations to emulate spatially varying mate-
rial grain structure, which we use in our complex examples showing
detailed fractures comprised of rigid-body animations.

(a) (b) (c) (d)

Figure 10: a) planar edge-crack under mode I, II, and III loading.
Results: b) mode-I, c) mode-II, d) mode-III.

Fig. 10 shows propagation behaviour according to Irwin’s crack
loading modes [Irw57] (see also Fig. 5). Our results are inline
with theoretical predictions of LEFM by producing a crack which
propagates according to the applied loading.

To assess the impact of our approximation quantitatively, we

compared stress intensity with an empirical equation for the sin-
gle edge notch test in 2D (see Anderson [And05], Tab. 2.4). Our
setup used a cube with edge length 4m consisting of 9987 elements
(2048 nodes) and an initial crack surface with 60 faces. The material
parameters used were: Loading=100N, Young’s modulus=2GPa,
Poisson’s ratio=0.3, and density=2800 (kg/m3). Fig. 11 plots our es-
timate (blue) and the empirical solution (red) as the crack propagates
(horizontal axis). Our method provides a linear approximation of a
quadratic function, which is sufficient for low propagation steps but
underestimates the SIF further away from the initial crack. For ap-
plications which do not require numerical fidelity, the advantage of
our approximation is that it avoids crack-tip enrichment. Crack-tip
enrichment, achieves better accuracy but at the cost of extra design
complexity, increased computation and potential instability arising
from the extra degrees of freedom.

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0e+00

1e+03

2e+03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Crack Length Scale

KI

●

●

2D Empirical Solution [Anderson 2005] 
3D Approximation [Ours]

Figure 11: Comparison: our approximation of SIFs vs empirical
solution [And05] for the single edge-notched tension test (Mode-I).

(a) Initial crack. (b) Propagation result.

Figure 12: Crack propagation of the inclined crack under vertical
loading

Fig. 12 shows our result for the “inclined penny crack” test, which
is a crack propagation test often used in engineering to evaluate the
validity of the simulation method. A circular surface crack is placed
inside a cube with a 45◦ inclination relative to the axis of principal
stress. Our method maintains qualitatively correct crack orientation
in all cases. The fracture surface smoothly re-orients itself to be
orthogonal to the direction of principal stress.

Material Modulation: Smooth surfaces in homogeneous mate-
rial are important for brittle fracture simulation but they may lack
the quality observed in real-world materials. Instead, we combine
our already high-resolution cracks with surface-texture parametriza-
tion [DMA02] to obtain the distinctive quality sought in simple
fashion. An example of our results is shown in Fig. 13. In addition,
our method inherently supports spatial variations in the elasticity
parameters enabling several avenues for biasing crack initiation as
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shown in the example of Fig. 14. This is in contrast to methods
such as BEM [HW15] where variations in the elasticity parameters
require adjusting the fundamental solution.

(a) Homogenous (default). (b) Specimen-X.

(c) Specimen-Y. (d) Specimen-Z.

Figure 13: Texture-based material grain structure which are used
to emulate physically based toughness models. Here we show simple
examples where a small fragment is chipped away from a block

Our Method vs. BEM [HW16]: We performed a thin material
breakage test where we compared our XFEM based method with the
well known BEM. In the scenario shown in Fig. 16 we drop a wine
glass on the floor. Because of the ground contact force, the glass
breaks into multiple fragments. With our simulation (Fig. 16b), the
entire glass shatters into multiple shards. In contrast, for the BEM
simulation the bowl is noticeably unbroken resulting in a physically
incorrect and even implausible state as cracks are under-resolved
(Fig. 16a).

Figure 15: close-up
model from Fig. 16a.

BEM can simulate impressive re-
sults in objects where the volume-
to-surface-area ratio is sufficiently
large. However, on objects with
relatively larger surface area the
method exhibits limitations in frac-
ture behaviour on thin parts (and
always dependent on the mesh-
ing details) with a number of
causes including low-order integra-
tion, mesh resolution, and related
numerical issues. Fractures tend to get ‘stuck’ and fail to cut off
fragments properly (cf. Fig. 15). Also, we observed a particular
susceptibility to a loss of intricate sharp features during cutting
(cf. Fig. 17) due to a dependence on meshing operations with im-
plicit surfaces which can be memory intensive to resolve.

Complex Brittle Fracture: In addition to the comparisons and
benchmark examples, we performed four simulations with multiple
complex fractures. In the first experiment (cf. Fig. 18, left), the
Stanford bunny is thrown at a wall. Although the object has complex
concavities in its shape, the bunny is broken into many pieces. In the
second example, we simulated a head-on impact collision between
the Stanford armadillo and bunny (cf. Fig. 18, middle). Here we
demonstrate that the rigid body coupling is able to handle fast paced
interactions and/or robust collisions with many fragments. The third

Stress Fragments
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an
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rd
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d

Figure 14: Using material modulation to guide fracture. Consider-
ing homogeneous elasticity, high stress is within the inner left elbow
(top-left) causing it to crack as shown in (top-right). By using a sim-
ple voxel embedding with stress-biasing coefficients, we weaken the
middle of the armadillo relative to the rest of its body. This causes
the highest stress to be in the chest area (bottom-left) and the crack
is initiated this weak region (bottom-right).

(a) BEM (b) XFEM (ours)

Figure 16: BEM [HW16] vs our method: Simulating brittle fracture
in objects with thin features. Our method breaks the entire wine glass
including the bowl and rim which are the thinest parts unlike BEM
which breaks only the stem and base.

example (cf. Fig. 18, right) breaks a heavy marble statue fragmented
into multiple pieces which retain their characteristic sharp features.

In the scenario illustrated in Fig. 1, we collide a wrecking ball with
a statue which is then broken into many pieces. The result is another
example of our ability to handle finely structured cuts with sharp
edges on our fragments. Moreover, it shows that our method yields
realistic results even on a relatively coarse mesh. The tetrahedral
mesh is approximately 7k elements while the visualised/cutting
mesh has 40k triangles.

Our performance results are shown in Table 1 which provides a
breakdown of how long individual components took in each bench-
mark shown. These timings are based on our unoptimized and single-
threaded implementation.

7.2. Polygon-Mesh Cutting

In this section, we show results for our mesh cutting algorithm. We
first compare against similar mesh-based approaches and then show
examples highlighting the generality of our approach.
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(a) BEM (b) XFEM (ours)

Figure 17: Comparison of shard thickness and sharpness
(cf. Fig. 16): The wine glass has thin parts which when broken
produce shards with sharp edges. Here we show the difference be-
tween two example pieces from our simulation and BEM [HW16].
The piece from BEM is comes from the foot of the wine glass since
it exhibits the finest breakage, whereas ours is from the bowl which
is the thinest part of the glass.

Example Mt tcd ttet tsim tcut ttot

Fig. 1 40k 121 313 491 802 1539
Fig. 13 .3k 27 7 30 135 197

Fig. 16b 13k 1733 855 1411 329 3721
Fig. 18 (a) 8k 863 514 415 795 2471
Fig. 18 (b) 18k 788 529 203 365 1843
Fig. 18 (c) 16k 493 258 179 552 1437

Table 1: Performance overview: (Mt ) triangles defining input
meshes (total); (tcd) convex decomposition time; (ttet ) tetrahedrali-
sation time; (tsim) fracture simulation; (tcut ) mesh cutting time; (ttot )
total computation time of the entire simulation (includes I/O, mesh
simplification etc.). Timings are given in seconds and measured on
an Intel R© CoreTM i9-7920X CPU @ 2.90GHz CPU.

Our Method vs. Sifakis et al. [SDF07] and Wang et
al. [WJST14]: We compared our cutting results with state of the
art [SDF07; WJST14], with respect to the number of triangles and
connectivity. For this, we cut a Stanford bunny mesh using four
different cutting surfaces (cf. Fig. 19). Table 2 summarizes the re-
sults. Compared to Sifakis et al., our method reduces the number
of mesh edges and cutting elements (boundary facets) by 20% and
30% respectively. Our algorithm also produces fewer polygons and
edges compared to Wang et al. [WJST14], and requires at least 17×

Cutting Method Repr. #Vertices #Edges #SurfacePolys

Sifakis et al. [SDF07] triangles 3420 10236 6824
Wang et al. [WJST14] tetrahedra 25581 22300 84692

Ours N-gons 3384 8226 4850

Table 2: Surface mesh cutting comparison: Using the scene shown
in Fig. 19, we show the size (total) of mesh data (geometry and
topology) which is to stored in order to cut the fragment meshes for
each method.

fewer cutting elements (tetrahedra in their case) than theirs since
we use a boundary representation of the cutting mesh. The visual
quality of the meshes corresponding to the results in the Table 2 can
be seen in Fig. 19.

Concave Polygons and Polyhedra: We demonstrate our cutting al-
gorithm’s ability to cut concave polyhedra (cf. Fig. 20) and polygons
by cutting a remodelled pentagonal frustum (blue) with a large quad
(red). The pentagonal faces are modified so that there is a concavity,
rotated so that they are not parallel to each other and divided into
polygons with many concavities. The whole model is composed of
only one volume element (all edges are on the surface). Our algo-
rithm produces the correct surface meshes for the fragments (white),
and does not modify the connectivity except where intersected with
the cutting surface.

General Examples: In addition, we show our cutting algorithm’s
ability to handle more general examples including partial cuts, 2D
cuts and 3D boolean operations while still operating directly on the
halfedge data structure. In Fig. 21a, we show a 3D partial cut where
the input mesh is a cube with convex faces (no triangulation), and the
cutting surface is composed of two triangles. Our algorithm correctly
computes one output component with an incision-cut along three
faces where the interior is sealed to form a water tight mesh (right).
We show 2D cutting in Fig. 21b. In this example, our algorithm
correctly cuts a surface mesh into two components with abutting
convex and concave polygons. Finally, we show a generalisation to
constructive solid geometry in Fig. 22, where we correctly handle
a boolean operation between the Stanford bunny and a cube. Our
algorithm produces the correct results for the classic set of oper-
ations (union, intersection and subtraction), and does not require
additional information aside from the halfedge connectivity of the
input surfaces.

8. Conclusion

XFEM is a simulation technique used in engineering which is usually
tailored by domain experts for each application. We have presented
an adaptation of XFEM applicable to brittle fracture simulation
in computer graphics. Our algorithm improves the generality, effi-
ciency, scalability and controllability of classical FEM by sacrificing
accuracy. After introducing how we add cracks to the linear sys-
tem, an approach to estimate stress intensity factors to compute
crack propagation for XFEM was described. We demonstrated the
advantages of using an explicit representation of the crack surface.
Further, we showed that our method is able to realistically simulate
detailed cracks – even with coarse tetrahedral discretizations. A
general surface-cutting algorithm was also presented, which when
combined with our explicit formulation enabled a decoupling of the
resolution of the crack surface from the degrees of freedom. The cut-
ting algorithm is exact in the sense that we only modify connectivity
incident to the crack surface.

Limitations and Future Work: While we estimate the stress field
within the volume, we perform cutting using surface meshes. The
fragments therefore need to be tetrahedralized for recursive breakage
to be possible. Although this introduces an extra computational cost,
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(a) Bunny (b) ArmBunny (c) Statue

Figure 18: Examples of brittle fracture simulated with our method.

(a) Setup

(b) [SDF07] (c) [WJST14] (d) Ours

Figure 19: Mesh cutting evaluation scene where a bunny is cut into
four pieces. See also Table 2.

our approach can deal with recursive breakage more efficiently than
classical FEM, which requires the tetrahedral mesh to be refined dur-
ing crack propagation. Our method only requires tetrahedralization
once for each crack surface that generated fragments.

Another limitation of our method is that we assume simple topolo-
gies for the propagation of the crack front. We do not explicitly han-
dle crack bifurcation (‘branching’ as in e.g. [DMD*00; MGS11]),
and self-intersections which can occur. Despite this, our method
can still be used to simulate complex fracture patterns on flat (wine
glass) and volumetric (statue) shapes.

Controlling the condition number of the stiffness matrix is an
open challenge in XFEM discretization, which we did not address.
Simulation failure can occur if the stiffness matrix is not kept reg-
ular, and/or when nodes whose enrichment functions have only

(a) input mesh (b) cutting plane (c) output

Figure 20: An extreme example. The input mesh (blue) is a pentag-
onal frustum where the pentagons (top and bottom faces) have been
made concave (and are not parallel to each other). Each pentagon
is composed of polygons with several concavities.

(a) 3D partial cut. (b) 2D cutting

Figure 21: Examples of handling incision (partial) cuts and 2D
cuts.

small supports in the cut element are not removed (see Fries and
Belytschko [FB10] for a brief discussion).

Our cutting algorithm successively consigns the use of floating-
point operations to the task of calculating intersection points but it
is not provably robust against rare degeneracies. Despite this fact,
the algorithm is reasonably stable, even with our complex fragment
geometries. One solution to providing robustness guarantees is incor-
porating contingency measures to detect and resolve degeneracies by
using tolerances in a hierarchical manner and specifying bounds on
floating point error [WJST14]. Alternatively, geometric predicates
may also be applied e.g. using the binary space-partition view for
representing intersection points [BF09].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chitalu et al. / DC-XFEM for Simulating Brittle Fracture

(a) Input (b) Subtract cube (c) Subtract bunny (d) Intersection (e) Union

Figure 22: A boolean operation result using our mesh cutter

Finally, as mesh fragments often exhibit complex geometries,
robust tetrahedral meshing tools are often required to mitigate un-
predictable failures during tetrahedralization (and even simulation).
Thus, the stability of simulation is also dependent on robust meshing
tools (like TetWild [HZG*18]) to cater for arbitrary shapes with
intricate geometries.
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Appendix

System Matrix Blocks: The entries for the system matrix blocks
in Eq. (9) are defined as follows (cf. Eq. 2.68 in [Kho15]):

Kuu =
∫

Ω

(
Bstd

)ᵀ

DBstd, Kua =
∫

Ω

(
Bstd

)ᵀ

DBhev (14)

Kau =
∫

Ω

(
Bhev

)ᵀ

DBstd, Kaa =
∫

Ω

(
Bhev

)ᵀ

DBhev (15)

where, Bstd = ∂N/∂x and Bhev = ∂N/∂x [N(x)ϒhev(x)] are the gra-
dient operators for the standard and enrichment shape functions
respectively. The right hand side of Eq. (9) is assembled using the
known element tractions t as

f =


∫

∂Ω

(
Nstd

)ᵀ
t∫

∂Ω

(
Nhev

)ᵀ
t

 (16)

Crack-tip Angular Functions: The angular functions describing

near-tip stress change along the circumference direction in Eq. (9)
are defined as follows (cf. Eq. 3.16, 3.25 and 3.31 in [Kun13]):

gI
1 = cos

θ

2
(κ− cosθ) , gI

2 = sin
θ

2
(κ− cosθ) (17)

gII
1 = sin

θ

2
(κ+ cosθ+2) , gII

2 =−cos
θ

2
(κ+ cosθ−2) (18)

gIII
3 = sin

θ

2
, (19)

where κ = 3−4ν is the elastic constant for plane strain.
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