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Fig. 1. Given the wrist and object trajectories, the system is able to synthesize dexterous manipulation of the object based on the proposed hand-object
spatial representation at interactive frame rate, such as (a) the right hand grasps and holds a teapot while the left hand regrasps a mug and (b) the right hand
turns a torus in hand.

Natural hand manipulations exhibit complex finger maneuvers adaptive to
object shapes and the tasks at hand. Learning dexterous manipulation from
data in a brute force way would require a prohibitive amount of examples
to effectively cover the combinatorial space of 3D shapes and activities. In
this paper, we propose a hand-object spatial representation that can achieve
generalization from limited data. Our representation combines the global
object shape as voxel occupancies with local geometric details as samples
of closest distances. This representation is used by a neural network to
regress finger motions from input trajectories of wrists and objects. Specifi-
cally, we provide the network with the current finger pose, past and future
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trajectories, and the spatial representations extracted from these trajecto-
ries. The network then predicts a new finger pose for the next frame as
an autoregressive model. With a carefully chosen hand-centric coordinate
system, we can handle single-handed and two-handed motions in a unified
framework. Learning from a small number of primitive shapes and kitchen-
ware objects, the network is able to synthesize a variety of finger gaits for
grasping, in-hand manipulation, and bimanual object handling on a rich set
of novel shapes and functional tasks. We also demonstrate a live demo of
manipulating virtual objects in real-time using a simple physical prop. Our
system is useful for offline animation or real-time applications forgiving to
a small delay.
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1 INTRODUCTION
People interact with 140 objects on average daily [Zuccotti 2015]
without much thought. These everyday objects are also remarkably
diverse in shape and form across different cultures and geography.
No other intelligent agents can yet match such dexterity of the hu-
man hand. In feature films and games, finger motions still involve
tedious manual animation or cleaning of motion capture data, espe-
cially those involving object interactions. In virtual or augmented
reality, the controller-based or pinch-based object interaction model
falls short of producing subtle and realistic finger movements, break-
ing immersion in an otherwise magical experience. Robot hands
can learn to perform dedicated tasks precisely, such as swing-peg-
in-hole [Chebotar et al. 2019], connector insertions [Schoettler et al.
2019], or solving a Rubik’s cube [Andrychowicz et al. 2020], thanks
to recent advancements in deep reinforcement learning. However,
a general model that can perform diverse manipulation tasks on a
wide variety of objects is still beyond reach, let alone performing
with grace.

In this work, we choose to learn natural manipulation behaviors
directly from data using a deep neural network given the explo-
sive success of deep learning. However, the combinatorial nature
of a manipulation [Touvet et al. 2014] exacerbates the hunger for
high quality data. A manipulation depends not only on the shape,
size, and functionality of the object, but also on the intended task,
the hand anatomy, and even personal preferences. Although it is
now possible to capture hand-object interaction motions in real
time [Han et al. 2018], the vast space of variations still seems daunt-
ing. Some researchers are dedicated to improving the quality and
quantity of datasets for the community [Brahmbhatt et al. 2020;
Taheri et al. 2020]. We instead aim to investigate how much we
can generalize learning from a small number of object shapes to
geometric variations, and to extend the supported manipulations
beyond purposeful and goal-driven grasping to subtle finger gaits
and in-hand manipulations people often perform naturally and un-
intentionally.
Our main idea is to utilize features that represent the spatial

relation between the hand and the object, with insights from biome-
chanics literature on grasping. Studies [Jarrassé et al. 2014; Santello
et al. 1998] indicate that the overall grasping pose lies in a low di-
mensional space that is largely determined by the task. Higher-order
variations of the hand pose depend on details of the object shape.
Moreover, variations in hand pose start to form as the hand is get-
ting closer to the object [Santello et al. 2002]. We therefore choose a
coarse representation for the global object shape, and a dense repre-
sentation for local geometric details of the object surface, but only
when the hand is in close proximity. Many solutions exist to rep-
resent 3D geometry for neural networks, such as voxel occupancy
grids [Wu et al. 2015], signed distance fields [Dai et al. 2017; Song
et al. 2017], and point samples [Qi et al. 2017a,b]. In our case, we
attempt to reduce the feature dimensions to avoid overfitting while
still capture important information. We use a low resolution voxel
occupancy grid to represent the object shape. We find that distance
samples between the hand and the object surfaces are effective low
dimensional signals that capture details well.

Specifically, we train a neural network to predict finger poses
of object manipulations from control signals and object geometric
features. Control signals are 6D trajectories of the wrists and of the
object. Previous work of Ye and Liu [2012] already demonstrated
the efficacy of these control signals in constraining finger motions
of a manipulation. However, a deep learning formulation addition-
ally requires a minimum and unambiguous input representation
for better generalization. We design our network to handle only
a single hand-object pair. We mirror the other hand and run the
network twice to generate predictions for both hands. This design
allows us to transform input features in the space of the hand to
remove ambiguity of the world coordinate, and enables us to handle
different combinations of interacting hands and objects in a unified
framework.
Our system can successfully synthesize a variety of finger gaits

for coordinated bimanual tasks or in-hand manipulations on a di-
verse set of objects, such as serving tea from a tea set or turning a
large torus in hand (see Fig. 1), without an exhaustive dataset. We
also show a live demo to demonstrate its potential for real-time in-
teractive applications in games and AR/VR. Comprehensive ablation
studies are presented to support our design. We will publish the ma-
nipulation dataset in this work to support research on fine-grained
finger gaits. We summarize our contributions as follows:
• A neural network-based motion synthesis system that can
generate detailed finger motions for one-/two-hand dexterous
object manipulation,
• a representation of hand-object spatial relation that enables a
neural network to generalize manipulation motions to a wide
range of object shapes and manipulation tasks,
• a hand-object interaction motion dataset that includes de-
tailed finger motions and dexterous manipulations of 16 man-
made objects.

2 RELATED WORK
In this section, we review research on grasp motion synthesis, dex-
terous object manipulation and hand motion tracking.

Synthesis of Grasping Motion. Grasp synthesis is a classic problem
tackled by researchers in robotics and computer graphics.

In computer graphics, physics-based control is an approach that
has been applied for synthesizing complex hand-object manipula-
tion. Pollard and Zordan [2005] construct a finite state machine that
tracks a set of reference poses for synthesizing grasping motions.
Kry and Pai [2006] capture both the motion and the forces produced
between the fingers and the object during grasping and use that for
synthesizing grasping motion of different objects. Li et al. [2007]
propose to shape-match the grasp pose and the object geometry first,
and then prune the candidates based on physically based analysis.

The rise of deep learning has also resulted in a rise of techniques
of data-driven grasp synthesis. In robotics, supervised learning tech-
niques to grasp objects given static images [Lenz et al. 2015; Liu
et al. 2019] or videos [Levine et al. 2016, 2018] are developed: the
precision can be greatly improved by learning from a large dataset.
Brahmbhatt et al. [2019] synthesize functional grasp by learning
from contact demonstrations. In graphics, Taheri et al. [2020] pro-
pose a generative model for synthesizing grasps conditioned on an
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Fig. 2. The outline of our framework. Given the poses of two hands, the shapes of objects as well as the trajectories of two wrists and objects at frame 𝑡 − 1.
The inputs of the two hands will be generated separately and fed into a shared neural network. Correspondingly, the poses for the two hands at frame 𝑡 will
be synthesized from the outputs of the neural network.

object. Karunratanakul et al. [2020] learn an implicit representation
for object grasping. The idea of using a distance field to represent
spatial relation between a hand and an object is actually similar
to our idea. In this paper, we present that it is possible to further
generalize not only grasping poses but a wide range of dynamic
dexterous manipulations using our distance-based representations
between a hand and object surface and virtual sensors we design to
measure the distances. We thus review work related to hand-object
manipulation in the following section.

Synthesis of Object Manipulation. Dexterous manipulation of ob-
jects is a rather difficult problem that requires the consideration of
the dynamic interaction between the hand and the object.

Methods to manipulate objects have been developed over physi-
cally based simulation. Liu et al. [2009] compute finger motion by
spacetime optimization given the initial pose and the motion of
the object. Ye and Liu [2012] further extend this idea to optimize
the finger contact location to produce a motion in a long horizon
given a complex object motion. Mordach et al. [2012] compute finger
motion by contact invariant optimization - despite only using local
optimization, they can synthesize complex manipulation such as flip-
ping pens. Zhao et al. [2013] apply particle swarm optimization to
control the physics-based model to track a motion demonstrated by
the user in front of a Kinect. Motions purely computed by optimiza-
tion tend to lack subtle styles of human motion, which are difficult
to be defined by physics-oriented constraints. We thus instead adopt
a strategy to learn such subtleties from human motion.

Deep reinforcement learning (DRL) is recently being applied for
controlling characters in physically based environment for hand-
object manipulation movements [Andrychowicz et al. 2020; Ra-
jeswaran et al. 2017] as well as full-body locomotion [Bergamin
et al. 2019; Park et al. 2019b; Peng et al. 2018, 2017] and carrying

objects [Merel et al. 2020]. One issue of DRL is that they have diffi-
culty generalizing to different setups, such as the change in object
geometry or hand morphology. Although techniques to retarget the
models to characters of different body sizes are being developed
for full body motion [Won and Lee 2019], such development for
hand-object manipulation is yet to be explored. The representation
with high generality that we develop in this paper can potentially
be applied for DRL-based techniques for physically based object
manipulation.

Hand Motion Tracking. A hand is surprisingly difficult to capture
even with a motion capture system because of high degrees of
freedom (~30 per hand), self-similarity of fingers and self-occlusion
despite its small size. Thus animators often had to manually design
finger motion that matches the captured full body motion, or use
separate devices such as Cyberglove1 to produce finger motion and
synchronize themwith the full body motion [Majkowska et al. 2006].
Thanks to the increase in the resolution of motion capture cameras
and the development of techniques to track the finger joints even in
the existence of occlusions [Han et al. 2018; Holden 2018], nowadays
the fingermotion tracking is becoming feasible, enabling data-driven
approaches for synthesis of conversational hand gestures [Jörg et al.
2012; Lee et al. 2019; Wheatland et al. 2015].
Advances of commodity cameras such as Kinect [Shotton et al.

2011] and powerful deep learning algorithms have been leading to
research on markerless hand motion capture from a single depth
map [Tompson et al. 2014; Yuan et al. 2018] or an RGB image [Ge
et al. 2019; Simon et al. 2017; Zimmermann and Brox 2017]. Real-time
tracking of interacting two hands with a commodity sensor [Han
et al. 2020; Mueller et al. 2019; Wang et al. 2020] has been also

1http://www.cyberglovesystems.com/
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demonstrated recently. Tracking of object grasping and manipula-
tion with hands, which is one of the key function of the hands still
remains challenging, due to severe occlusions by an object. Ballan
et al. [Ballan et al. 2012] use discriminatively learned finger salience
points to predict the hand pose. Kyriazis et al. [2014] achieve track-
ing interactions between two hands and objects by sharing states of
all objects and hands. Tzionas et al. [2016] consider physical validity
to optimize poses of f hands and an object. Sridhar et al. [2016]
develop a real-time tracking system of a single hand and a known
object using contact point constraints and segmentation of hand
parts and the object from an RGB-D image. Mueller et al. [2017]
develop a real-time single hand tracking system from an egocentric
RGB-D image by using synthetically created images of hands and
objects. Zhang et al. [2019] develop a real-time system to capture the
shape of an object grasped by a hand. Hasson et al. [2019] predict the
hand pose and the object geometry from an image using a network
trained with synthetic images. While these approaches, together
with public datasets for hand-hand interaction [Moon et al. 2020]
and hand-object interaction [Mueller et al. 2017; Tzionas et al. 2016],
are actively developed, real-time tracking of two-hand grasping and
manipulation of an object is still under exploration.

In summary, despite the advance in tracking techniques and ma-
chine learning priors, synthesis of dexterous hand-object manipula-
tion by inference is still a developing area. Dexterous hand-object
manipulation suffers from a great amount of occlusion and thus
a significant amount of data post-processing is needed to obtain
high quality motion capture data to be used for training. This is
actually one of the factors that increases the difficulty of applying
deep learning techniques for dexterous hand object manipulation. In
this research, we provide a high quality hand-object manipulation
database for partly overcoming this problem.

3 SYSTEM OVERVIEW
An overview of our system is shown in Fig. 2. It takes as input
the trajectories of both wrists and the object(s) being manipulated,
together with a skinned mesh of the hand and the 3D geometry
of the objects. The system then generates detailed finger poses for
both hands frame by frame using a deep neural network, ManipNet,
as an autoregressive model. While the network itself considers only
a single hand, we explain in Section 4 how our system handles
different combinations of hands and objects in a unified framework.

Sensing spatial relationships. To increase the generalizability of
the network and avoid overfitting to training data, we introduce in
Section 5 three types of virtual sensors to encode the object geometry
and its spatial relation with the hand. These sensors capture the
global object shape as a coarse voxel grid and local geometric details
as point samples. While the global features help to plan the overall
pose and to anticipate future motion, the local features play an
important role to enable generalization to variations in geometry.

ManipNet. It is a time-series model based on the residual dense
network architecture. Input to the network include a hand pose
in the previous frame, the sensor features, and the control signals,
which include the past and future trajectories of both wrists and
the object centered around the previous frame. The network then

predicts the distance between the fingers and the object in addition
to a new hand pose. The predicted hand pose is further processed
using the predicted distance such that the spatial relations between
the hand and the object are corrected. This corrected pose is then
used to compute inputs to the network at the next frame. We will
discuss the network in detail in Section 6.

4 RIGHT HAND-CENTRIC COORDINATE SYSTEM
Defining a coordinate system that is consistent for any motion, and
for either and both hands with and without objects is surprisingly
challenging. We choose to anchor the coordinate system at the right
hand wrist of the previous frame in the input trajectory. The entire
scene, including all the trajectories and geometries, are transformed
into this coordinate system before we extract features for the net-
work, such as the previous hand pose and the sensor features. To
process the left hand, we simply mirror the whole scene, process the
mirrored left hand as if it is the right hand, then mirror the output
back. When there is only one object in the scene, both hands use it
to compute sensor features. When each hand is handling their own
object, the respective object is used. As a result, we only need to
train the network with the right hand. At training time, both hand
data are given so there is no bias on handedness. At inference time,
we run the network on both hands to recover the entire scene, as
shown in Fig. 2. Meanwhile, the handedness bias can be preserved
at the inference time as the left/right hand preference will appear
in the input trajectories. This coordinate choice is agnostic to the
arbitrary definition of world coordinate or object local coordinate,
makes no assumption about the trajectories, and handles all combi-
nations of hands and objects in a unified framework. Based on this
setup, we will focus the discussion on a single hand in the following
sections.

We can alternatively work with the object local coordinate. How-
ever, there is no consistent way to define it among different objects,
especially for symmetric shapes. It also doesn’t apply to cases where
each hand holds a different object. We may also work with a body-
centric coordinate if the training data contains body motion. But we
suspect the relative motion between the body and the hands could
hurt performance, or will require much more training data to cover
this additional source of variation.

5 SENSING THE SPATIAL RELATIONS BETWEEN
HANDS AND OBJECTS

Object geometries provide crucial constraints to the hand motion.
If the same input trajectories are applied to different objects, the
hand needs to perform different manipulations and adapt to the
object shape. We therefore design three virtual sensors to extract
features that represent the spatial relation between a hand and
an object. These features aim to provide sufficient information to
determine the detailed finger positions, at the same time enable the
network to generalize from relatively sparse training samples to
a wide range of scenarios. We combine representations of global
shape information with local geometric details based on proximity.
While the former is helpful for the overall hand shape, the latter
shares more commonalities among different object shapes and is
more relevant for the manipulation task.
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Fig. 3. Left: Right hand holding a torus. Middle: Ambient sensor values
for the right hand. Right: Ambient sensor values for the right hand at a
different frame. Darker the voxel color larger the occupancy value.

The three types of virtual sensors include an Ambient sensor that
encodes the volume occupied by an object within the hand’s reach.
It provides a broad context to help with anticipation and long term
planning. To capture local geometric variations for accurate finger
placement, we place a few Proximity sensors on the hand surface
to inform its short term movement, and a small number of Signed
Distance sensors on the object surface to inform where to make
contact on the object.

5.1 Ambient Sensor
The Ambient sensor feature is the voxel occupancy of a 18 × 18 ×
18𝑐𝑚3 grid with a resolution of 10 × 10 × 10 (see Fig. 3). The voxel
grid is rigidly attached to the bone connecting the wrist and the
origin of the middle finger. The center of the grid is at a constant
offset (𝑥 = 4𝑐𝑚,𝑦 = 0𝑐𝑚, 𝑧 = 9𝑐𝑚, see Fig. 3) from the origin of the
middle finger, such that the grid center comes in front of the palm.
At each time step, we compute the overlap between the voxel

grid and the object geometry to update the object occupancy value
at each cell. Similar to [Starke et al. 2019], we approximate the
occupancy percentage 𝑜 for each individual cell as follows:

𝑜 =

{
0 no intersection,
1 − 𝑑

𝑠 intersection,

where 𝑑 ≥ 0 is the distance from the cell center to the object, and
𝑠 = 1.8𝑐𝑚 is the cell edge length. The Ambient sensor perceives the
size and rough shape of the object within the hand’s reach. Such
global information is helpful for shaping the pre-grasping behavior
of the hand, as the grasp aperture depends on both the object size
and distance. It can also inform a finger gaiting plan for future finger
placements. Although increasing the voxel resolution can help it
acquire more detailed geometry, the memory/computation costs
increase in cubic order. Moreover, with limited training objects,
the network may overfit to their distinct occupancy patterns. We
therefore use a coarse voxel grid in the Ambient sensor, and use
distance-based sensors as described below to capture more fine-
grained geometric details.

5.2 Proximity Sensor
The Proximity sensors are distributed across the hand’s surface to
sense the closest object surface for a given hand pose. We sample

Fig. 4. Left: The 104 Proximity sensors on the hand mesh. Right: Proximity
Sensors cast rays along the hand surface normal until they hit the object
surface (blue arrows), or at a maximum distance (yellow arrows).

Fig. 5. Two examples of the Signed Distance sensors for the right hand.
The hand joints are shown in green. Orange lines indicate the distance from
the hand joints to the torus. Cyan arrows are surface normals on the torus.

them uniformly from the hand mesh vertices on the palm side (see
Fig. 4 left). There are a total of 104 sensors to cover all the finger
segments and the palm area where contacts most likely occur. These
sensors cast rays along the normal direction on the hand mesh
until they hit the object surface or reach the distance threshold
𝛿max = 10𝑐𝑚. We reverse the ray direction if a sensor is already
inside the object. For a sensor 𝑗 , the distance feature 𝑑 𝑗 is computed
as:

𝑑 𝑗 =

{
𝑠𝑖𝑔𝑛(p𝑗 )



p𝑗 − p𝑐

 ray-object intersection,
𝑠𝑖𝑔𝑛(p𝑗 )𝛿max no intersection,

where p𝑗 is the sensor position on the hand, and p𝑐 is the intersection
point on the object surface. 𝑠𝑖𝑔𝑛(p𝑗 ) is positive if p𝑗 is outside the
object, and negative if inside. We collect values from each sensor and
construct a feature vector d = {𝑑0, ..., 𝑑103}. The Proximity sensors
capture the object surface details in close proximity to the hand.
These distances can inform the hand where contacts are going to
occur or where to avoid penetration in the intermediate future. As
the sensing direction is invariant to the object shape, the proximity
sensors are robust to concave features on the object.

5.3 Signed Distance Sensor
The Signed Distance sensors sample the object’s signed distance
field at each of the 22 finger joints. They consist of both the closest
distance value and the object’s surface normal direction (see Fig. 5).
Specifically, features s𝑗 at a hand joint 𝑗 is computed as

s𝑗 =
{
𝑠𝑖𝑔𝑛(p𝑗 )min

(

p𝑗 − p𝑜

 , 𝛿max
)
, n𝑜

}
ACM Trans. Graph., Vol. 40, No. 4, Article 121. Publication date: August 2021.
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where p𝑗 is the joint position, and p𝑜 is its closest point on the
object surface. n𝑜 is the surface normal at p𝑜 . We collect all the
features as s = {s0, ..., s21}. The signed distance field of an object is
pre-computed for efficient distance look up. However, the signed
distance field is limited in resolution. To acquire more accurate
results here, we use it to help find the closest surface point, then
compute the exact distance and normal. Since this is more expensive,
we only compute them at the hand joints.

The Signed Distance sensors encode object surface details un-
der the influence of the hand grasp aperture in close proximity.
The normal directions provide useful guidance on where to make
contacts on the object. We believe surface normals are important
features to consider for a physically valid grasp. We deliberately
separate the distance representation from the normals, so the net-
work can explicitly manipulate them to produce output distance in
an autoregressive fashion.

6 MANIPNET FOR HAND MOTION SYNTHESIS
In this section, we introduce ManipNet for synthesizing dexterous
hand manipulation. We will first explain the input and output of the
network.We then describe in detail its architecture based on residual
dense blocks [Zhang et al. 2018b], and finally implementation details
on post-processing and training.

6.1 Network Input and Output
The network regresses a hand pose and hand-object distances from
the previous pose, the hand and object trajectories, and sensor fea-
tures.
𝐼𝑛𝑝𝑢𝑡 X𝑡 = {P𝑡−1,T𝑡−1, S𝑡−1} at frame 𝑡 is

composed of the pose input P𝑡−1, trajectory
input T𝑡−1, and sensor input S𝑡−1, all extracted
at frame 𝑡 − 1.

• Pose input P𝑡−1 =

{
j𝑝𝑜𝑠
𝑡−1, j

𝑟𝑜𝑡
𝑡−1

}
is composed

of the joint positions j𝑝𝑜𝑠
𝑡−1 ∈ R

3𝑛 and their ori-
entations j𝑟𝑜𝑡

𝑡−1 ∈ R
6𝑛 , expressed in its wrist’s

coordinate at frame 𝑡−1. The orientations are
represented by two orthogonal axes defined
in the local coordinate system of each bone as
in [Zhang et al. 2018a]. 𝑛 = 22 is the number of joints in one hand
(see figure on the right). As mentioned in Section 4, our network
only considers the right hand pose. For the left hand, we provide
its wrist trajectory for additional context as described below. This
enables each hand to make predictions independent of each other.
We found that including the left hand pose in the input will easily
lead to overfitting to training hand poses.

• Trajectory input T𝑡−1 =

{
T𝑟𝑖𝑔ℎ𝑡
𝑡−1 ,T𝑙𝑒 𝑓 𝑡

𝑡−1 ,T
𝑜𝑏 𝑗

𝑡−1

}
is composed of

trajectories of the right wrist T𝑟𝑖𝑔ℎ𝑡
𝑡−1 , left wrist T𝑙𝑒 𝑓 𝑡

𝑡−1 , and the object
T𝑜𝑏 𝑗
𝑡−1. Trajectory features are commonly used as control signals

for character animation [Holden et al. 2017; Zhang et al. 2018a], as
they provide helpful context of the desired activity. We consider
trajectories of the hands and the object(s) centered at frame 𝑡 − 1,
with a total duration of one second.We uniformly sample 10 frames

in the past and 10 frames in the future to arrive at 21 frames on
each trajectory.
– T𝑟𝑖𝑔ℎ𝑡

𝑡−1 =

{
𝜏
𝑝𝑜𝑠

𝑡−1 , 𝜏
𝑟𝑜𝑡
𝑡−1

}
is composed of the sampled right wrist

positions 𝜏𝑝𝑜𝑠
𝑡−1 ∈ R

3×21 and orientations 𝜏𝑟𝑜𝑡
𝑡−1 ∈ R

6×21. They are
expressed relative to the right wrist coordinate at frame 𝑡 − 1.

– T𝑙𝑒 𝑓 𝑡
𝑡−1 =

{
𝜏𝑑𝑖𝑠
𝑡−1

}
, where 𝜏𝑑𝑖𝑠

𝑡−1 ∈ R
21 is the distance from the left

hand wrist position in each sample frame to the right hand wrist
position at frame 𝑡−1. We represent the left hand trajectory only
by distance to reduce the input feature dimension. Higher input
dimension will require more training data to avoid overfitting.

– T𝑜𝑏 𝑗
𝑡−1 =

{
𝜏𝑐𝑜𝑚
𝑡−1 , 𝜏

𝑎𝑣
𝑡−1

}
is composed of the positions of the object’s

center of mass 𝜏𝑐𝑜𝑚
𝑡−1 ∈ R

3×21 and the angular velocity 𝜏𝑎𝑣
𝑡−1 ∈

R3×21, all expressed in the right wrist coordinate at frame 𝑡 − 1.
We choose angular velocity as a feature because it can be defined
consistently for an object, regardless of its local coordinate. We
find it especially helpful for representing objects with symmetry.

Fig. 6. We compute sensor values for future frames using the hand pose at
frame 𝑡 −1. Top: One proximity sensor is shown here at three frame samples.
Bottom: Distance values from the sensor.

• Sensor input S𝑡−1 =
{
S𝑎𝑚𝑏
𝑡−1 , S

𝑝𝑟𝑜

𝑡−1, S
𝑠𝑑
𝑡−1

}
is composed of the three

types of sensor features as described in Section 5. The Ambient sen-
sor input S𝑎𝑚𝑏

𝑡−1 ∈ R
1000 is the flattened object occupancy feature.

For the Proximity sensor and the Signed Distance sensor, we not
only compute features at frame 𝑡 − 1, but also sample 5 additional
frames along the 0.5 second future trajectories. Because we don’t
know the future hand poses, we use the hand pose at 𝑡 − 1 instead
(see Fig. 6). These future sensors reveal what would happen to the
hand-object relationship if the hand pose were to remain static, as
to help better prepare for the future. Therefore, the Proximity sen-
sor input S𝑝𝑟𝑜

𝑡−1 ∈ R
104×6 consists of distance features of 6 frames

in total. For the Signed Distance sensors, we compute the distance
features at future frames, and the normal features only at frame
𝑡 − 1 to reduce input size, to arrive at S𝑠𝑑

𝑡−1 ∈ R
22×6+3×22.

In summary, there are 2356 input features to the network, including
P𝑡−1 ∈ R198, T𝑡−1 ∈ R336, and S𝑡−1 ∈ R1822.
𝑂𝑢𝑡𝑝𝑢𝑡 Y𝑡 = {P𝑡 , d𝑡 } is composed of the predicted pose P𝑡 ∈ R198,

and the predicted distance from the 22 hand joints to the object
surface, d𝑡 ∈ R22.
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Fig. 7. The diagram of our network consisting of encoders for three cate-
gories of inputs and two residual dense blocks with the same structure. FC
are fully-connected layers.

6.2 Network Architecture
An overview of the ManipNet architecture is shown in Fig. 7. The
network first encodes each set of input features into a 512 dimen-
sional vector respectively, then passes the concatenated features
through two residual dense blocks, and finally decodes the result-
ing features into the output. Both the encoders and the decoder
are fully-connected layers. The network is trained in a supervised
setting by minimizing the mean squared error (MSE) between the
output Y𝑡 and the ground truth Ŷ𝑡 .

Residual Dense Block: We now describe the details inside each
residual dense block [Zhang et al. 2018b]. The input to a residual
dense block is denoted by H0. Two residual connection operations
⊕ happen inside a residual dense block. The operation of each block
can be written as follows:

H1 = W0 RELU(H0) + b0 + RELU(H0)
H2 = W1 RELU(H1) + b1 + RELU(H1) + RELU(H0)

where H1,H2 are the outputs of the first and second dense layers
and W0 ∈ R1536×1536, b0 ∈ R1536,W1 ∈ R1536×1536, and b1 ∈ R1536
are the parameters of each layer.
The dense residual connections are preferable for our problem

because the network input and output contain the same information
at two consecutive frames. Instead of synthesizing the output from
scratch, it’d be easier for the network to make adjustments to the
input. We compare dense residual connections with residual con-
nections [He et al. 2016] and no residual connections qualitatively
and quantitatively to demonstrate its advantage in Section 8.

6.3 Post-processing
The network predicts smooth and realistic hand poses in similar
styles to the training data, especially for objects used in training.
However, the hand pose may have penetration artifacts for novel
objects or motions that are not seen in training. We rely on d𝑡 ,
the predicted distances between the finger joints and the object

surface, to enforce hand-object contacts more explicitly. Specifically,
for each joint, we first calculate a target position by combining
the network-predicted joint position and distance inside the object
signed distance field (see algorithm in Appendix B). These target
joint positions will then be passed into an inverse kinematics process
with the corresponding joint limits to edit the predicted hand poses.
As a compromise of speed and output quality, we adopt a CCD-
based IK solver [Aristidou and Lasenby 2011] with implementation
from [Starke et al. 2019], which runs much faster than optimization-
based alternatives.

6.4 Implementation details
We now describe implementation details in setting up network
training and inference.
During network training, we use ground truth data to compute

both the training input (X𝑡 ) and the ground truth output (Ŷ𝑡 ). Sensor
features are computed from the ground truth hand pose at frame
𝑡 − 1. The ground truth output distances are computed from ground
truth hand pose at frame 𝑡 , and clamped to [0.0, 3.5]𝑐𝑚. The pre-
dicted output distances are clamped to be non-negative. We limit
the range of the distances so the network can focus on when the
hands are close to the object. This training setting is per-frame
based with no recurrent component. We double the training set
with data mirroring, so the network does not have a handedness
bias. Besides mirroring, we do not do any other data augmentation
or randomization.

During inference, we assume the trajectory input is obtained from
some motion tracking solution, and the pose computed at frame
𝑡 − 1 is used to compute network input at frame 𝑡 . The output pose
is updated by post-processing before feeding back to the network
as input. We initiate the hand motion from the neutral pose, and
start inference before the hands come into contact with the objects.
In a live setting, we start pose prediction after a 0.5 second delay to
collect future input trajectories. Notably, even without data random-
ization in training, we do not observe any drift or regress-to-mean
behavior at inference time.

7 EXPERIMENTAL RESULTS
In this section, we first describe the data collection process and
details of the dataset. We next describe the training process and
present experimental results. Please refer to the supplementary
video for visual validation.

(a) Primitive objects (b) Dining table objects

Fig. 8. Objects in our dataset with held-out objects highlighted.
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(a)

(b)

(c)

Fig. 9. Results of the proposed method with (a) hemisphere, (b) bunny and (c) cube objects.

Motion Capture Setup. We capture our dataset using the deep
label system [Han et al. 2018]. We used an Optitrackmotion capture
system with 16 cameras at 60 frames per second, and gloves with 19
markers per hand for finger tracking. Objects are tracked as rigid
bodies using marker clusters. To have an accurate correspondence
between the virtual and physical objects, we 3D-printed the ob-
ject models and manually calibrated the marker clusters attached
on each object. We capture both single-handed and two-handed
manipulation motions.

Object Manipulation Dataset. Our dataset includes dexterous ma-
nipulations of two types of objects: primitive shapes and dining
table drink ware. The motions are all performed by a single subject.
The primitive object dataset consists of basic shapes shown in

Fig. 8(a). We use 58, 300 frames for training, and leave out the hemi-
sphere object and a total of 28, 000 frames for testing. Our goal is
to capture various free-form dexterous manipulation behaviors in-
cluding grasping, spinning, re-grasping, passing between hands and
putting down, as well as transitions between these behaviors. The
hand motions are mostly constrained by the object geometry. We
expect a model trained from these primitive shapes can generalize
to more complex shapes, because of their commonalities in local
geometric details.
The dining table object dataset consists of drinkware as shown

in Fig. 8(b). We include motions such as pouring from teapots or
wine bottles, drinking from a cup, as well as casually fiddling with
these objects. 90, 880 frames are used for training, and 32, 000 frames
for testing, including all 8, 000 frames where each hand is manipu-
lating a different object. The goal of this dataset is to demonstrate
functional manipulations of more complex shapes. We expect to see

generalization from this dataset to richer behaviors on everyday
objects, especially those with handles and concavities.

Training. The network is trained in Tensorflow [Abadi et al. 2016]
using the Adam optimizer [Kingma and Ba 2014], with a batch size
of 32 and a learning rate of 0.0001. Dropout [Srivastava et al. 2014]
is applied with a retention probability of 0.7 to avoid overfitting.
Training is performed for 500 epochs for the primitive object dataset
and takes around 1.5 hours with GeForce GTX 2080 GPU. The dining
table object dataset takes around 2.5 hours with the same setting.

Results. We now present experimental results from our system.
We refer readers to the supplementary video for visual evaluation.

Separate networks are trained on each of the two datasets, de-
noted asManipNet𝑃 andManipNet𝐷 . We first applyManipNet𝑃 on a
held-out trajectory of the torus (seen in training) and on the held-out
object hemisphere. We do not expect the output to replicate the cap-
tured finger motions on these novel input, but expect visually plau-
sible manipulations in agreement with the object geometries and
motions. Indeed, when turning a large torus in hand (see Fig. 1(b)),
we see non-trivial finger gaits with rewinds and substitutions [Han
and Trinkle 1998; Hong et al. 1990], carefully orchestrated across
the torus’ surface. The doughnut hole is opportunistically utilized
to stabilize the grip. When passing the hemisphere between hands
(see Fig. 9(a)), all ten fingers naturally conform to either the flat side
or the round side with coordinated movements, even though this
combination of flat and round surfaces is novel. We also test scaled
versions of the cylinder (seen in training) on a held-out trajectory
(see Fig. 10). The hands have no problem adapting to this novel
task, where the pregrasping apertures are properly adjusted for the
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Fig. 10. The held-out trajectory applied to cylinders of different scales.

Fig. 11. The same input applied to two different shapes.

different sizes. We can also apply the same unseen trajectory to
drastically different object shapes, such as a bunny (see Fig. 9(b))
and a triangular prism, and observe distinct motions consistent with
the respective object (see Fig. 11). Finally, an example of manip-
ulating a cube is produced with a held-out trajectory, where the
system produces a sequence of rotation and regrasping motion (see
Fig. 9(c)).
We conduct similar experiments with ManipNet𝐷 . We success-

fully generate a new tea pouring motion that requires the hands to
manipulate their own objects, grasp on handles, and make small pre-
grasping adjustments (see Fig. 1(a)). We also test new teapot and cup
models not seen in training, as variations in tea sets are practically
countless. The resulting motions include functional activities such
as pouring (see Fig. 12) and drinking, as well as transitioning be-
tween hands and collaborating for support and finger adjustments.
The fingers are able to grasp a cup on its body by going through the
handle, or directly grabbing the handle.

Finally, we show a live demo where a user manipulates an object
not seen during training in an interactive motion capture session.
Motions of the wrists and the object are tracked. The finger mo-
tions are synthesized in real time with a 0.5 second delay due to
the requirement of future trajectory input. We can substitute the
real object with different novel virtual objects on-the-fly, such as a
hammer, a wine bottle, a bunny, a pig, and a dolphin etc. (see Fig. 13).
The user can manipulate the real object to accomplish purposeful
tasks, or just to fiddle with it for fun. Our system automatically
synthesizes natural and realistic finger movements appropriate for
the corresponding virtual objects.

Failure Cases. Our feature representation is limited in spatial
resolution as both the voxel grid and the distance sensors are sparse.
It is therefore easy to miss small features on the object. For example,
as shown in the right, the thumb penetrates the thin handle of

Fig. 12. A snapshot of a scene where the Utah teapot is used to pour into a
novel mug cup. The original scene is shown for reference.

Fig. 13. (top) Scenes where various 3D objects manipulated at the online
demo. (bottom) The live demo setup.

the cup because it is too small. As a mitigation, we could adopt an
adaptive-resolution representation to balance between run-time and
accuracy. Other common failures are due to inaccurate predictions
of the hand pose and distances. They manifest as either penetrations
or the lack of desirable contacts.

8 EVALUATION
We first describe three evaluation
metrics, then present ablation studies
against them to validate our design.

Evaluation Metrics. The evaluation of
our system is inherently visual since we
are generating new animations not seen
in any data. And because our network is
a regression function (rather than sam-
pling from a distribution as in common generative models), the
output motion naturally follows the same style as the training data.
In our case, artifacts reveal themselves as finger-object penetrations
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Fig. 14. The snapshots of the ablation study where the proximity sensor
(left), both the signed distance and proximity sensors (middle) and the future
sensing (right) are disabled.

Fig. 15. The snapshots of the ablation study where the architecture is
switched to MLP (left) and Resnet (right).

or inconsistent finger movements with the object motion. In addi-
tion, post-processing could introduce noise and jitter. We therefore
use finger penetration, physical realism of the manipulation, and
finger motion smoothness as quantitative evaluation metrics.
• Penetration We approximate the hand mesh by a collection
of capsules for collision detection, and compute the depth of
penetration between the hand and the object at every frame.
We expect a small penetration at the site of contact even in
the ground truth data, due to soft finger deformations. But
large penetrations (ie. ≥ 1.5𝑐𝑚) indicate a non-physical pose.
• Physical realism We evaluate whether the object’s motion
can be explained by frictional contacts from the hand as a
metric of physical realism. We solve for contact forces applied
to the object as explained in Appendix A, on frames without
large penetrations. We then count the percentage of frames
where this inverse dynamics problem is feasible.
• Smoothness The acceleration of the 22 finger joint positions
is computed as a metric for smoothness. It indicates whether
the motion is jittery, as may be induced by noisy network
output or post-processing. Meanwhile, the smoothness can
illustrate the temporal coherence achieved under different
settings by comparing against the ground truth data.

These three metrics need to be jointly considered to evaluate the
quality of a motion.

Ablation Study. We conducted ablation studies of each compo-
nent of the system and present the statistics in Table 1. We compare
the physical realism and penetration metrics with and without in-
verse kinematics (IK) in post-process. Without IK, we can better
compare the network output between different training settings.
With the help of distance prediction, IK is extremely useful in fixing
severe penetration artifacts and making contact, therefore greatly

improves the physical realism of the result. More importantly, the
processed pose is fed back to the network as input, so errors do
not accumulate over time. However, large edits to the output pose
will lead to unpleasant jittery motion. We therefore also present the
smoothness metric of IK results to demonstrate this trade-off.
We experimented with ManipNet𝑃 in two scenarios: generaliza-

tion to a new trajectory unseen in training with a known object
(cylinder), and generalization to a held-out object (hemisphere).
The new object presents a greater challenge to the network as its
performance degrades quite significantly. Thanks to the distance
prediction and IK, we can still produce high quality results.
We study the effect of virtual sensors by removing them from

the system. If we remove all sensor information and only use the
trajectories as input, we see about a 45% drop in physical realism
without IK ("no sensors" in Table 1). In this case, the network has
no knowledge of the object shape and won’t be able to adapt the
finger pose accordingly. IK is not always successful in improving
penetration without introducing a lot of noise in the motion.We also
test removing only the ambient sensor ("no ambient" in Table 1) or
removing both the proximity sensor and the signed distance sensor
("no distance" in Table 1). The former deprives the network of global
shape information so the grasping behavior is only influenced by
the closest shape details. The latter only supplies the network with
coarse shape information, so it cannot handle fine details in the

Table 1. Results of the ablation study when each module/sensor is removed
from the system, tested with objects seen during training (top) and unseen
during training (bottom). The physics show the ratio of frames that the
interaction is physically plausible, with/without IK. The penetration is the
average penetration per frame and collider, with/without IK. When all
geometry sensors are turned off, the system predicts the finger motions
only from the wrist and object trajectories. Smoothness is the acceleration
of the finger joints per frame.

Seen object (cylinder), unseen trajectory
with IK without IK smoothness
phy.(%) / pen.(𝑐𝑚) phy.(%) / pen.(𝑐𝑚) (𝑐𝑚/𝑠2)

raw data 95.63 / 0.2680 - / - 109.5
ours 94.75 / 0.3485 88.00 / 0.4678 109.8
no sensors 89.50 / 0.4016 49.75 / 0.7372 143.5
no ambient 91.75 / 0.3644 64.50 / 0.5550 117.3
no distance 89.75 / 0.4023 81.75 / 0.5050 131.2
short traj. 94.25 / 0.3607 79.25 / 0.5254 119.2
ResNet 81.75 / 0.4100 77.00 / 0.5014 126.8
MLP 83.25 / 0.4283 46.25 / 0.7301 200.2

Unseen object (hemisphere), unseen trajectory
with IK without IK smoothness
phy.(%) / pen.(𝑐𝑚) phy.(%) / pen.(𝑐𝑚) (𝑐𝑚/𝑠2)

raw data 92.19 / 0.2957 - / - 78.22
ours 93.75 / 0.4175 66.50 / 0.6150 74.25
no sensors 74.75 / 0.4682 45.00 / 0.7206 104.3
no ambient 93.25 / 0.4497 51.00 / 0.7509 84.12
no distance 92.00 / 0.4292 47.50 / 0.6887 93.09
short traj. 90.25 / 0.4348 61.75 / 0.6240 88.65
ResNet 91.50 / 0.4723 61.75 / 0.6599 89.83
MLP 85.50 / 0.4919 59.25 / 0.6171 170.5
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geometry. We see degradation of metrics in both cases either with
or without IK. Visually, we observe more penetrations or absence
of desirable contacts when we leave out any type of sensors, includ-
ing distances from future frames (see Fig. 14). Each virtual sensor
provides unique information in different scenarios, so we get the
best results by combining them.

Future trajectories are important for pre-grasp shaping and plan-
ning of finger gaits, at the expense of long delays in real time ap-
plications. This is a trade-off each application has to consider. For
reference, we show the metrics of using a shorter future trajectory
("short traj." in Table 1), where it is shortened from 0.5 second to 0.1
second, corresponding to two sample frames of trajectories and one
sample frame of future distances.

Finally, we study the effect of dense residual connections, by com-
paring with residual connections only (i.e., ResNet, removing the
outer residual connection inside the block in Fig. 7) and no residual
connections (i.e., MLP). As expected, more residual connections lead
to better results, as more information is carried from the input to the
output (see Fig. 15). Training curves for different network structures
are shown in Fig. 16.

Fig. 16. Training curves of ManipNet, ResNet and MLP.

9 DISCUSSIONS
We presented a neural network formulation to synthesize finger
motions of object manipulation using both hands. Our key contri-
bution is features that represent the spatial relation between the
hand and the object in a manipulation. They proved to be crucial
for the network to generalize from a small dataset to new shapes
and new motions, as supported by quantitative ablation studies. We
also demonstrated their efficacy in a live demo of casually fiddling
with different virtual toy animals, and in activities such as serving
tea from tea sets of various shapes and sizes.
Our network can serve as an autoregressive model even though

it is trained from ground truth data without any special training
routines or data randomization. We believe this can be attributed
both to the IK process that prevents error accumulation, and to our
choice of input features that effectively discriminate the control sig-
nals without overfitting. IK also plays an important role to improve
physical realism in novel scenarios. Nonetheless, better network
predictions are always valuable as they provide IK with a better

initial pose and more accurate distance targets. Notably, our results
also affirm the finding from Ye and Liu [2012] that the object shape
and the relative motion between the hand and the object together
provide sufficient information about the manipulation. We observe
that even the relative motion alone encodes distinctive features of
the object’s affordance. It enables generalization to new motions of
the same object to a certain degree, and motions of an object doesn’t
directly apply to arbitrary objects. We hope our findings above will
inspire new ideas in related areas.

10 LIMITATIONS AND FUTURE WORK
Data variation. We are encouraged by what the network can learn

from a small dataset, but this by no means implies our model would
not benefit from a large variety of high quality hand-object interac-
tion data, such as the GRAB dataset [Taheri et al. 2020]. It will allow
us to expand support to multiple hand models and different motion
styles of performing the same task. Especially, the lack of certain
type of objects in our dataset hinders our model to generalize to tiny
or intricate objects. It could be interesting to explore more precise
motion capture for such scenarios. Another potential direction is
to condition the motion generation on a parametric hand model
such as MANO [Romero et al. 2017]. Similarly, conditional gener-
ative models like MoGlow [Henter et al. 2020] are promising for
stochastic and stylized motions [Alexanderson et al. 2020].

Physics plausibility. Although our results look natural in general,
physical realism only comes from training data distribution and is
not strictly enforced. It would be interesting to explicitly encode
physical constraints into the neural network formulation. We can
also post-process our results in a physical simulation, for example
as a reference to DeepMimic-type [Peng et al. 2018] of motion con-
trollers. Moreover, our single hand based coordinate cannot handle
an intense interactions between the two hands, such as interleaving
fingers when holding a cup. A fruitful future direction is to unify
single-hand, two-hand, and hand-object interaction synthesis under
the same framework, by investigating more general and learnable
representation of geometric features [Park et al. 2019a].

Synthetic data capture. Our system can be an interesting source of
synthetic data for training neural networks, as realistic hand-object
interaction data is still expensive to collect. Our system can also
be a useful alternative to finger motion capture for VFX or game
production, with the convenience of substituting different objects in
post-production, and without the additional hassle of finger track-
ing hardware. Animators can use our system to iterate quickly on
complex finger animations involving objects. A helpful addition to
our system would then be to take hand-animated trajectories as
input and output modified trajectories similar to the training data.

Real-world application. Alternatively, capturing the required in-
put trajectories are actually quite accessible at home. Many com-
mercial or open source solutions are available to track rigid object
trajectories and hand trajectories from a smart phone [Apple 2021;
Facebook 2021; Google 2021]. Moreover, as AR/VR hardware is rising
in the consumer market, incorporating our system with their builtin
object tracking [Oculus 2021; Vive 2021] and hand tracking [Han
et al. 2020; Leap 2021; Microsoft 2021; Ultraleap 2021] solutions will
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open up many creative opportunities to new interactive content.
Unfortunately, we need to mitigate the latency from future trajecto-
ries to deliver a satisfactory experience. A potential solution is to
further infer the future trajectories based on high level goals and
the past motion, as done in [Starke et al. 2019], or to combine with
a motion planer learned from video or real-world demos [Wang
et al. 2019]. As our system requires the object geometry as input,
on-line mesh reconstruction from the camera data can improve the
applicability of our system.

Geometry representation. Geometric features play an important
role when humans interact with unseen objects. Given the recent
progress in object saliency [Lau et al. 2016] and functionality [Hu
et al. 2018, 2020; Pirk et al. 2017] analysis, one compelling future
direction can be to use features extracted by such models as input
to our system to plan the movements based on the object’s saliency
and functionality.

Full body interaction. Finally, it will be interesting to integrate
our system as a module in an embodied AI agent to synthesize
complex full body interaction actions in a realistic environment,
such as arranging items on a shelf, retrieving toys from a toybox, or
cooking food by adding and mixing ingredients [Batra et al. 2020].
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Fig. 17. Left: collision geometries. Colliding capsules highlighted in red.
Middle: hand contact basis with a friction coefficient 0.1. Right: hand contact
basis with a friction coefficient 0.5. Brown arrows are contact normals.

A PHYSICS EVALUATION
We evaluate the physical validity of the hand motion by looking at
the rigid body dynamics of the object during in-hand manipulation.
Wewant to make sure the input object motion can be fully supported
by contact forces from the hands. Since we are dealing with casual
activities with lightweight objects, we do not evaluate hand joint
torques.
• Dynamics We follow the Barraff tutorial [Barraff 1997] to com-
pute the change of linear momentum ¤𝑃 and angular momentum ¤𝐿
of the object at every frame. The linear and angular velocities (𝑣 ,
𝜔) and accelerations (¤𝑣 , ¤𝜔) are computed using finite differences
from the input object trajectory.

𝑃 (𝑡) = 𝑀𝑣 (𝑡) (𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) (1)
¤𝑃 (𝑡) = 𝑀 ¤𝑣 (𝑡) (𝑓 𝑜𝑟𝑐𝑒) (2)
𝐿(𝑡) = 𝐼 (𝑡)𝜔 (𝑡) (𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) (3)
¤𝐿(𝑡) = ¤𝐼 (𝑡)𝜔 (𝑡) + 𝐼 (𝑡) ¤𝜔 (𝑡) (𝑡𝑜𝑟𝑞𝑢𝑒) (4)
𝐼 (𝑡) = 𝑅(𝑡)𝐼𝑜𝑅(𝑡)𝑇 (𝑤𝑜𝑟𝑙𝑑 𝑠𝑝𝑎𝑐𝑒 𝑜𝑏 𝑗𝑒𝑐𝑡 𝑖𝑛𝑒𝑟𝑡𝑖𝑎) (5)
¤𝐼 (𝑡) = ¤𝑅(𝑡)𝐼𝑜𝑅(𝑡)𝑇 + 𝑅(𝑡)𝐼𝑜 ¤𝑅(𝑡)𝑇 (6)
¤𝑅(𝑡)𝑇 = [𝜔 (𝑡)]𝑅(𝑡) ( [] 𝑖𝑠 𝑎 𝑠𝑘𝑒𝑤𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥) (7)

We don’t know the ground truth mass 𝑀 of the objects. Since it
only scales the forces, we simply set it to 1 for all objects. The
object space inertia matrix 𝐼𝑜 is computed from the 3D mesh of
the objects. We stack ¤𝑃 and ¤𝐿 into a vector b.
• Contacts and forces Hand-object contacts are detected based on
the finger capsule colliders and the object mesh collider in Unity
(see Fig. 17 left). For simplicity, each capsule collider can only
detect at most one contact point. To model frictional contact, we
use four basis to approximate Coulomb’s friction cone for static
friction. If we detect a sliding contact from the motion, one basis
vector is used instead to model sliding friction. Fig. 17 shows the

detected contacts and their force basis with two different friction
coefficients from a grasping pose. We use 0.35 as the friction co-
efficient in our evaluation. Specially, we compute the force and
torque at each frame by summing up the contributions from each
contact location 𝑐𝑖 as follows:

𝐹 (𝑡) =
∑

𝑓𝑖 (𝑡) +𝑀𝑔 (𝑓 𝑜𝑟𝑐𝑒) (8)

𝜏 (𝑡) =
∑
[𝑐𝑖 (𝑡) − 𝑜 (𝑡)] 𝑓𝑖 (𝑡) (𝑡𝑜𝑟𝑞𝑢𝑒) (9)

𝑓𝑖 (𝑡) = 𝑉𝑖 (𝑡)𝑥𝑖 (𝑡) (10)

where 𝑜 (𝑡) denotes the object center of mass, 𝑉𝑖 (𝑡) denotes the
linear force basis at each contact point, and 𝑥𝑖 is the corresponding
non-negative coefficients. We stack Eq. (8) and Eq. (9) into a linear
system Ax, where x = [𝑥𝑇0 , 𝑥

𝑇
1 , ...]

𝑇 .
• Optimization with Non-Negative Least Square We measure
the violation of physics as the objective value of the following
optimization:

argmin
x
∥Ax − b∥2 , 𝑠 .𝑡 . x ⩾ 0

We use the non-negative least square solver in Accord.NET Frame-
work2 with a maximum of 100 iterations. If a frame is physically
valid, the objective will be optimized to zero. If the optimized ob-
jective is nonzero, it means no valid contact forces can balance the
object motion. We threshold the value at 0.01 and use the ratio of
success frames as our metric. We also evaluate the physicality of
our training data this way as a baseline.

B POST-PROCESSING ALGORITHM

ALGORITHM 1: Calculate the target joint position for CCD-based
IK given the joint position and distance predicted by the network.

Function FindTargetJointPosition(𝑝𝑜𝑠𝑛𝑒𝑡 , 𝑑𝑖𝑠𝑛𝑒𝑡):
Input :Network-predicted joint position, distance: 𝑝𝑜𝑠𝑛𝑒𝑡 ,

𝑑𝑖𝑠𝑛𝑒𝑡

Output :Target joint position: 𝑝𝑜𝑠𝑡𝑎𝑟𝑔𝑒𝑡
if 𝑑𝑖𝑠𝑛𝑒𝑡 <= 2.8𝑐𝑚 then

/* Get the nearest object surface point, the
surface normal direction, the signed distance
value for joint at 𝑝𝑜𝑠𝑛𝑒𝑡 from the object
signed distance field. */

𝑝𝑜𝑖𝑛𝑡𝑠𝑑 𝑓 , 𝑑𝑖𝑟𝑠𝑑 𝑓 , 𝑑𝑖𝑠𝑠𝑑 𝑓 ← SDFNNSearch(𝑝𝑜𝑠𝑛𝑒𝑡);
if 𝑑𝑖𝑠𝑠𝑑 𝑓 < 0 then

/* If penetrating, rely more on the predicted

distance. */

𝑑𝑖𝑠𝑓 𝑖𝑛𝑎𝑙 ← 0.8 ∗ 𝑑𝑖𝑠𝑛𝑒𝑡 + 0.2 ∗ 𝑑𝑖𝑠𝑠𝑑 𝑓 ;
else

/* If no penetration, rely more on the

predicted pose. */

𝑑𝑖𝑠𝑓 𝑖𝑛𝑎𝑙 ← 0.2 ∗ 𝑑𝑖𝑠𝑛𝑒𝑡 + 0.8 ∗ 𝑑𝑖𝑠𝑠𝑑 𝑓 ;
end
𝑝𝑜𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑝𝑜𝑖𝑛𝑡𝑠𝑑 𝑓 + 𝑑𝑖𝑠𝑓 𝑖𝑛𝑎𝑙 ∗ 𝑑𝑖𝑟𝑠𝑑 𝑓 ;

else
𝑝𝑜𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑝𝑜𝑠𝑛𝑒𝑡 ;

end
return 𝑝𝑜𝑠𝑡𝑎𝑟𝑔𝑒𝑡

2http://accord-framework.net
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