
Team Edinferno
Description Paper for RoboCup 2011 SPL

Subramanian Ramamoorthy, Aris Valtazanos, Efstathios Vafeias, Christopher Towell,
Majd Hawasly, Ioannis Havoutis, Thomas McGuire?, Seyed Behzad Tabibian,

Sethu Vijayakumar, Taku Komura

School of Informatics
The University of Edinburgh

10 Crichton Street
Edinburgh EH8 9AB

United Kingdom

Abstract. This paper outlines the organization and architecture of a robotic soc-
cer team, Team Edinferno, developed at The University of Edinburgh. This paper
serves as the qualification document for the 2011 RoboCup Standard Platform
League competitions. We are a completely new team aspiring to compete in in-
ternational competitions from 2011, so the team and software architecture have
been built from scratch. We are also potentially the first ever SPL team from the
United Kingdom. Our primary research interests are centered on issues of robot
learning, especially for effective autonomous decision making and strategic be-
haviour in continually changing worlds. This is supported by solid foundations
in robotic locomotion and full-body behaviours, on-board computer vision and
communications software infrastructure.

1 Introduction and Team Composition

Team Edinferno is a new team, potentially the first Standard Platform League team from
the United Kingdom. The team consists of graduate and undergraduate students and
more experienced robotics researchers from the School of Informatics at The University
of Edinburgh. We come from a strong research group studying robot learning (within the
Institute of Perception, Action and Behaviour), situated within a very diverse and active
community of AI and computer science researchers - one of the largest and best in the
UK. The team is lead by Dr. S. Ramamoorthy, who has extensive background in robotics
and machine learning, in academia and industry. Research within our group is organized
around the central theme of understanding and developing autonomous decision making
mechanisms in continually changing and strategically rich environments. The Standard
Platform League affords a very tangible and interesting domain for our research work.

2 Software Modules and Core Capabilities

As a new team, we have invested significant efforts towards establishing all the basic
modules required of a soccer playing agent. Although we have developed all of these
? Visiting Undergraduate Student from Universität Siegen, Germany



modules from the ground up, we have paid attention to ideas coming out of other es-
tablished teams - as described in their description documents and technical reports. As
seen in our supporting video, we have achieved all the basic capabilities required for us
to be able to play in the SPL and look forward to that opportunity. The core architecture
of our agent is summarized in figure 1.

Fig. 1. Software architecture - major modules.

The core infrastructure is based on the existing Naoqi architecture. Every module
exists in its own thread and runs on the robot’s main broker (Nao’s central program).
The Behaviour module communicates with both Vision and Localization modules. The
processes are invoked through normal function calls, while data is exchanged through
shared memory. Each module publishes its result into ALMemory (based on a black-
board architecture). So, Behaviour module calls the vision updates, calls Monte Carlo
localization update when Vision is done and also provides motion information (odom-
etry updates). The Vision module posts results of object recognition to shared memory.
The Localization module updates the global position of the robot in the shared memory
block to be available to the other modules.

On-board Vision Our vision module uses color segmentation as the basic operation,
exploiting colour cues to find ball, field lines, goal posts, etc. We train our segmentation
algorithm, in the YUV colour space, using sample images obtained under various con-
ditions. This yields binary images for each base colour. In these images, we search for
contours using OpenCV functions. This allows us to handle two types of vision tasks.
A simple task is something like finding waistbands on robots, which we approach as
a region finding operation - using bounding boxes. More complex tasks include circle
detection, which require a bit more processing as discussed below. We also include op-
erations for finding and using the horizon as well as calibrating against fixed systematic
errors (e.g., in head pitch angle).

The Vision module provides the localization module with the key features it needs:
goal posts’ position, cross spots’ and circle position. Circle detection works by finding
intersections between all lines that are perpendicular to the contour lines of white re-
gions. The distance of the intersection to the contour needs to be roughly the same as the
radius of the field circle. So, intersections are clustered and the cluster with the highest
score is used to define the circle. All of this computation is defined in field space, based
on projections from image space.



Fig. 2. Representative output of the Vision module - real time detection of key features based on
colour segmentation.

Probabilistic Localisation Our Monte Carlo localization is based on visual features
that are detected in real time - the locations of goal posts, cross spots and the circle. We
implement an augmented version of a particle filter algorithm [1] to avoid the standard
problems of the kidnapped robot and false convergence. The particle filter uses a motion
model that draws on odometry information. Once the particle filter has been initialized
(which only takes a few steps and scans), we are in a position to average the beliefs for
the purposes of further decision making, e.g., motion planning. Our supporting video
includes complete demonstration sequences showing this module in action.

Locomotion and Behaviour The architecture of the Behaviour module is summarized
in figure 3.

Fig. 3. Architecture of the Behaviour module.

The key operations within this module are as follows:

– Observation Updater: polls the vision module for the latest image coordinates of
relevant objects and converts into world coordinates, relative to an egocentric refer-
ence frame. World coordinates are computed using a distance/direction estimation
function, which accounts for the robot’s head yaw and pitch angles, as well as the
focal length of its camera. For every visible object, the observation updater gener-
ates a new observation, which is the simplest representation of the robot’s current
perception of the world (e.g. “a pink robot at a distance of 0.5 metres”). If the ball
is visible, this also computes desired head yaw and pitch angles for the next frame,
in order to center the camera image.

– Belief Estimator: generates the robot’s current beliefs on the state of the other ob-
jects. A belief is generated by matching a current observation to a past belief (e.g.
“the pink robot at a distance of 0.5 meters is the pink robot seen at the previous
frame at a distance of 0.9 meters”). Beliefs also contain a confidence attribute; if
an object is visible, the robot’s confidence on the state of this object is set to 1.0,



otherwise, for every frame that the object is not visible, this confidence gradually
decays. In order to generate a new belief for another robot, the belief estimator
passes each robot observation through a particle filter, which computes the likeli-
hood of the current observation given the previous beliefs and the robot’s motion
and sensory model.

– Decision Maker: uses the robot’s current beliefs to decide which high level action
should be taken. The chosen action depends on the robot’s role (attacker, defender,
goalkeeper) and its levels of confidence on the various features and attributes of in-
terest (robot’s own location in the field, ball location, location of the other robots).
Several branches of the decision making state machine also depend on some con-
fidence thresholds, e.g., depending on their confidence on the location of the ball,
attackers may choose to “move” towards it, “move while scanning with their head”,
or “stop and do a full head scan”. Examples of other actions include “kick with left
foot”, “get up from back” and “scan for teammates”. These actions are also clus-
tered; for example, moving to the ball and moving while avoiding another robot
both fall under the same “move” action label.

– Path Planner: computes the trajectory to take towards a point of interest. It first
computes a desired target pose, e.g., if the robot knows ball and goal location, a
target pose is a pose that will allow it to kick towards the goal. For kicking-related
actions, there are four candidate target poses (for straight left kick, right straight
kick, left side kick and right side kick), and the path planner selects the closest
one based on current pose. Then, a path is constructed from start to end pose. If
there are no obstacles, the path is linear - created by interpolation. Otherwise, for
each obstacle, the path planner computes various landmark points which are out-
side a safety distance from the obstacle. If multiple obstacles are present, only the
landmarks that are safe with respect to all obstacles are retained. Then, the planner
selects the landmark which minimises the distance to the target pose, and splits the
generated path into two parts (current pose→safe landmark, safe landmark→target
pose).

– Action Executor: executes the chosen action. Kicking and get-up actions comprise
predefined motion sequences. For moving actions, the action executor takes the first
point of the computed path, and computes the velocity vector (x, y, θ) with which
the robot should move to reach this point. For scanning actions, the action executor
keeps track of the last angle pair scanned by the robot, and updates these angles
accordingly.

– Belief Normaliser: updates all the robot’s estimates (observations, beliefs, and par-
ticles) based on the robot’s most recent movement. This movement is computed
through odometry and corresponds to changes in the x-y coordinates and the orien-
tation of the robot. Using this movement, estimates are translated and normalised
so that they are in the correct position, relative to the robot’s new (transformed)
frame of reference.

Communication and Coordination Certain kinds of communication are mandatory.
So, we implement the ability to enable robots to obey both the GameController and the
button interface. Button presses are correctly and automatically sent back to the Game-
Controller. Of more interest is the ability to communicate a shared state and use this
for coordinated motion. We have the ability to share localization and belief informa-
tion between our robots, in a compact form. This enables robots to implement simple



Fig. 4. Decision making architecture - attacker module.

heuristics such as allowing the best placed robot to take on the role of striker, avoiding
on-field conflicts1.

3 Key Research Contributions and Future Directions

Strategic and Multi-objective Motion Planning Based on the solid foundation al-
ready fully implemented in our agents, we are exploring more sophisticated ways to
make strategic decisions in response to opponent strategies. Our current work [2] uses a
description of possible opponent strategies in terms of reachable sets, based on models
of dynamics and system performance limitations (e.g., maximum velocity along each
direction). It is possible to pre-compute template reachable sets for key motion hy-
potheses. Then, by utilizing real time information from particle filter based estimation
of opponents’ positions, we are able to select - online - the ‘best’ reachable set and plan
safe paths with respect to this. This is already implemented and one particular benefit
of this approach is that it allows us to overcome the limitation of sparse, slow and par-
tial observability by utilizing a more sophisticated, predictive, model of the opponent.
We are currently exploring ways to achieve tighter coupling between positional estima-
tion and strategy hypotheses, and also taking into account multi-objective performance
criteria.

Full-body Humanoid Robot Behaviours A long standing strength within our research
group is in the area of machine learning for humanoid locomotion [3, 4] and full-body
humanoid behaviours [5, 6]. It may be worth noting that this work [5] was considered
as a finalist for the RoboCup Best Paper Award at IROS 2010. In our current imple-
mentation, shown in supporting video, we build on the existing ALMotion engine as
this was the quickest way for us to get the team going. This has already been extended
in specific cases such as for directional kicks and the goal keeper. In future, we plan

1 We have full and state of the art functionality, as illustrated in our supporting video and dis-
cussed in following section, for avoiding static and dynamic obstacles. Here, we refer to the
ability to avoid the situation in the first place!



to implement more of our research outputs in specific roles such as focussed kicks for
passing, maintaining stability while kicking powerfully and adjusting body postures in
tight situations such as for the goal keeper and when many robots are nearby.

Team-level Strategy Design and Learning (related to our 2D Simulation League
team) In addition to the SPL team, we also plan to enter the 2D Simulation League.
This latter league allows for significant strategic sophistication. We are exploring a lay-
ered architecture where by fusing locally-sensed observations we build a shared com-
pact representation of world state and game dynamics. This representation is encoded
in predicate-like statements. Distributed local control is used to drive the system in
this predicate space to the desired goal states. The local controllers are designed and
learnt off-line for specific tasks and subgoals, embedding domain knowledge. Using re-
inforcement learning mechanisms, the controllers are optimized against various classes
of opponents and standard team mate behaviours. To maintain robustness in online in-
teractions, online estimation of the quality and robustness of the controllers is utilized
to compensate for unknown opponents and situations.

In current and future work, we are adapting specific ideas from this simulation
league framework to improve the coordinated behaviour of our SPL agents. Currently,
with few exceptions, SPL agents seem to view opponents as essentially ‘noise’ to be
overcome. We hope to be able to go a little bit further in the direction of understanding
opponent intent and reacting to or otherwise gainfully utilizing this information.

4 Conclusions

Team Edinferno is a new SPL team, potentially the first one from the United Kingdom.
The underlying research work builds on strong background in robot learning and aims
to advance the state of the art of autonomous decision making in continually chang-
ing worlds. Although the team is still in formative stages (e.g., in possession of only
two RoboCup version Naos), we have successfully implemented fully functional agents
demonstrating all required functionality. We plan to deploy this in live competition at
the Mediterranean Open in March 2011. This will help us become fully ready for the
main RoboCup event in Istanbul.

References
1. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, 2006.
2. A. Valtazanos, S. Ramamoorthy, Online motion planning for multi-robot interaction using

composable reachable sets, Under Review.
3. S. Ramamoorthy, B.J. Kuipers, Trajectory generation for dynamic bipedal walking through

qualitative model based manifold learning. In Proc. Int. Conf. Robotics and Automation, pp.
359-366, 2008.

4. I. Havoutis, S. Ramamoorthy, Motion synthesis through randomized exploration on subman-
ifolds in configuration space. In J. Baltes et al. (Eds.): RoboCup Symp. 2009, LNAI 5949, pp.
92-103, 2010.

5. I. Havoutis, S.Ramamoorthy, Constrained geodesic trajectory generation on learnt skill mani-
folds. In Proc. Int. Conf. Intelligent Robots and Systems, 2010.

6. C. Towell, M. Howard, S. Vijayakumar, Learning nullspace policies, In Proc. Int. Conf. Intel-
ligent Robots and Systems, 2010.


