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Abstract

We investigate a solution to the problem of multi-sensor perception by formulat-
ing it in the framework of Bayesian model selection. Humans robustly integrate
and segregate multi-sensory data as appropriate, but previous theoretical work has
focused largely on purely integrative cases, leaving segregation unaccounted for
and unexploited by machine perception systems. We illustrate a unifying, prin-
cipled Bayesian solution which accounts for both integration and segregation by
reasoning explicitly about data association in a probabilistic framework. Unsuper-
vised learning of such a model with EM is illustrated for a real world audio-visual
application.

1 Introduction

There has been much recent interest in optimal multi-sensor fusion both for understanding human
multi-sensory perception[4, 1] and for machine perception applications[3, 6]. Most of these have
considered the simple cases in which the observations are known to be correlated (generated from
the same latent source), and the task is merely to make the best estimate of the latent source state
by fusing the observations. However, in most real world perceptual situations any given pair of
observations are unlikely to have originated from the same latent source. A more general problem
in multi-sensor perception is therefore to infer theassociationbetween observations and any latent
states of interest as well as any potential integration or segregation that may be necessary as a
result. This data association problem has been of more long standing interest, for example, in the
radar community[2]. Aside from enabling correct sensor fusion, data association can be of inherent
interest for understanding higher level semantics encoded in the observations. For example, a key
task in interpreting a meeting for a human or machine is not just to infer who was there and what
was said, but to correctly associate visual and acoustic observations to understand who said what.

In this paper, we illustrate the commonality of multi-sensor perception problems in these domains
and provide a unifying, principled Bayesian account of their solution, reasoning explicitly about
the association of observations with latent states. Moreover, we illustrate that using the EM algo-
rithm, such inference can be performed simultaneously with parameter estimation for unsupervised
learning of perceptual models.

2 Theory

We can frame the inference of data association equivalently as a model selection or a structure
inference problem. A graphical model for the process of generating observations in twodifferent
modalitiesD = {x1, x2} from asinglesource with latent statel is illustrated in Fig. 1(a). The source
state is drawn independently along with binary visibility/occlusion variables(M1,M2) specifying
its visibility in each modality. The observations are then generated withxi being dependent onl if
Mi = 1 or on some background distribution ifMi = 0. Equivalently, all the structure options could
be explicitly enumerated into four separate models, and the generation process then first selects



Figure 1: Graphical models to describe generation of multi-modal observations. (a) Occlusion
semantic: Observationsxi are dependent on latent statel or a background distribution, depending
on visibility structure variables,Mi. (b) Multi-object semantic: Observationsxi are determined by
a single object of latent statel or two latent objectsli depending on the model,M . (c) Multi-object
semantic: Compact description.

one of the four models to describe how the observations will be generated before selectingl and
generating the observations according to the dependencies encoded in that model. Inference in this
model then consists of computing the posterior over the latent state and the generating model (either
the two binary structure variablesMi or a single model index variable) given the observations. An
observation in modalityi is perceived as being associated with (having originated from) the latent
source of interest with probabilityp(Mi = 1|D), which will be large if the observation is likely
under the foreground distribution and small if the observation is better explained by the background
distribution.

To illustrate with a toy but concrete example, consider the problem of inferring a single dimensional
latent statel representing a location on the basis of two point observations in separate modalities.l is
governed by an informative1 Gaussian prior centered at zero, i.e.,p(l) = N (l|0, pl) and the binomial
visibility variables have prior probabilityp(Mi) = πi. If the state is observed by sensori (Mi = 1)
then the observation in that modality is generated with precisionpi, such thatxi ∼ N (xi|l, pi).
Alternately, if the state is not observed by the sensor, its observation is generated by the background
distributionN (xi|0, pb), which tends toward un-informativeness withpb → 0. The joint probability
of the model can be written as

p(D, l, M) = N (x1|l, p1)
M1N (x1|0, pb)

(1−M1)N (x2|l, p2)
M2N (x2|0, pb)

(1−M2)N (l|0, pl)p(M1, M2)

If we are purely interested in computing the posterior over latent state, we integrate over models or
structure variables. For the higher level task of inferring the cause or association of observations,
we integrate over the state to compute the posterior model probability, benefiting from the automatic
complexity control induced by Bayesian Occam’s razor[5].

p(M1 = 0, M2 = 0|x1, x2) ∝ N (x1|0, pb)N (x2|0, pb)(1− π1)(1− π2)

p(M1 = 1, M2 = 0|x1, x2) ∝ 1

Z1
exp− 1

2

(
x2

1p1pl/(p1 + pl)
)
N (x2|0, pb)π1(1− π2) (1)

p(M1 = 1, M2 = 1|x1, x2) ∝ 1

Z2
exp− 1

2

(
x2

1p1(p2 + pl)− 2x1x2p1p2 + x2
2p2(p1 + pl)

p1 + p2 + pl

)
π1π2

Intuitively, the structure posterior (Eq. 1) is dependent on the relative data likelihood under the back-
ground and marginal foreground distributions. The posterior of the fully segregative model depends
on the background distributions and hence tends toward being independent of the data except via the
normalization constant. In contrast, the posterior of the fully integrative, pure fusion model depends
on the three way agreement between the observations and the prior.

Fig. 2 illustrates a schematic of some informative types of behavior produced by this model. If the
data and the prior are all strongly correlated (Fig. 2(a)) such that both observations are inferred with

1Think of this as a filtering task where we have the estimate ofl from the previous frame
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Figure 2: Inference in occlusion semantic toy model. Likelihoods of the observations in each of
two modalities in black, prior in grey. Observations (a)x1, x2 strongly correlated, (b)x2 strongly
discrepant, (c)x1, x2 both strongly discrepant, (d)x1, x2 both moderately discrepant.

near certainty to be associated with the latent source of interest, the fused posterior over the location
is approximately Gaussian withp(l|x1, x2) = N (l|l̂, pl|x) wherepl|x = p1+p2+pl, l̂ = p1x1+p2x2

pl|x
.

If x2 is strongly discrepant withx1 and the prior (Fig. 2(b)), it would be inferred with near certainty
that sensor2 was occluded and its observation generated by the background distribution. In this case,
the posterior over the state is again near Gaussian but fusing onlyx1 and the prior;pl|x = p1 + pl,

l̂ = p1x1
pl|x

. If both x1 andx2 are strongly discrepant with each other and the prior (Fig. 2(c)), both
sensors are likely to have been occluded, in which case the posterior over the latent state reverts to
the priorpl|x = pl, l̂ = 0. Finally, if the correlation between the observations and the prior is only
moderate (Fig. 2(d)) such that the posterior marginal over the structural visibility variables are not
near certain, then the posterior marginal over the latent state is a (potentially quad-modal) mixture
of 4 Gaussians corresponding to the four possible models. For real world data, occlusion, or other
cause for meaningless observation is almost always possible, in which case assuming a pure fusion
model (Fig. 2(box)) can result in dramatically inappropriate inference.

There is one more distinguishable way in which two point observations can be generated, i.e., each
could be generated by a separate source instead of a single source. The choice of the multi-source
versus the fused generating model (Fig. 1(b)) can also be expressed compactly as structure inference
as before by also using two latent state variables as in the single source case, but requiring equality
between them ifM = 1 and independence ifM = 0 (Fig. 1(c)).

It is possible to enumerate all five possible model structures and perform the Bayesian model se-
lection given the data. However, usually the semantics of a given perceptual problem correspond
to a prior over models which either allows the four discussed earlier (“occlusion semantic”) or a
choice between one or two sources (“multi-object semantic”). The occlusion semantic arises for
example, in audio-visual processing where a source may independently be either visible or audible.
The multi-object semantic arises, for example in some psychophysics experiments[7] where both
sensors have definitely observed an interesting event, and the task is to decide what they observed,
which is conditionally dependent on whether they observed the same source or not.

We will now illustrate the latter case with a toy but concrete example of generating observations in
two different modalitiesx1, x2 which may both be due to a single latent source(M = 1), or two
separate sources(M = 0). Using vector notation, the likelihood of the observationx = [x1, x2]T
given the latent statel = [l1, l2]T is N (x|l,Px) wherePx = diag([p1, p2]). Let us assume the
prior distributions over the latent locations are Gaussian but tend to un-informativeness. In the
multi-object model the prior overlis p(l|M = 0) ∼ N (l|0,P0) is uncorrelated, soP0 = p0I and
p0 → 0. In the single object model, the prior overlis p(l|M = 1) ∼ N (l|0,P1) requires thelis to



Figure 3: Inference in multi-object semantic toy model. (a) For correlated inputs,x1
∼= x2, the

presence of one object is inferred and its location posterior is the probabilistic fusion of the obser-
vations. (b) For very discrepant inputs,x1 6= x2, the presence of two objects is inferred and the
location posterior for each is at the associated observation.

be equal soP1 is chosen to be strongly correlated. The joint probability of the whole model and the
posterior over the structure are given in Eq. 2.

p(x, l, M) = N (x|l,Px)N (l|0,P0)
(1−M)N (l|0,P1)

Mp(M)

p(M |x) ∝
∫
l

N (x|l,Px)N (l|0,P0)
(1−M)N (l|0,P1)

Mp(M)dl

p(M = 0|x) = N (x|0, (P−1
x + P−1

0 )−1)

p(M = 1|x) = N (x|0, (P−1
x + P−1

1 )−1) (2)

A schematic of interesting behavior observed is illustrated in Fig. 3. Ifx1 andx2 are only slightly
discrepant (Fig. 3(a)), then the single object model is inferred with high probability. The posterior
over l is also strongly correlated and Gaussian about the point of the fused interpretation;p(l|x) ∼
N (l|̂l,Pl|x) wherêl = P−1

l|xPxx, Pl|x = Px +P1. The location marginals for eachli are therefore

the same and aligned atl̂. If x1 andx2 are highly discrepant (Fig. 3(b)), then the two object model
is inferred with high probability. In this case the posteriorp(l|x) is spherical and aligned with the
observations themselves rather than a single fused estimate; i.e.l̂ = P−1

l|xPxx ' x, Pl|x = Px+P0.

The inferences discussed so far have been exact. Obviously there are various potential approxima-
tions such as computing thelocation posteriorgiven the MAP model, which may be acceptable in
some cases, but crucially misrepresents the state posterior for regions of input space with interme-
diate discrepancy (c.f. Fig. 2(d)). Alternately, themodel probabilitycould be approximated using a
MAP or ML estimate of the latent state variable. The agreement between the Bayesian and MAP
solution depends on how much the latent state posterior is like a delta function, which depends on
both the agreement between observations and the precision of their likelihoods. However, using the
ML estimate of the state will not work at all as the most complex model will always be selected.

Previous probabilistic accounts of human multi-sensory combination (e.g. [4, 1]) are special cases of
our theory, having explicitly or implicitly assumed a pure fusion structure. [8] describes a heuristic
democraticadaptivecue integration perceptual model, but again assumes a pure fusion structure.
Hence these do not, for example, exhibit the robust discounting (sensory fission or segregation) of
strongly discrepant cues observed in humans[4]. As we have seen, such fission is necessary for
perception in the real world as outliers can break mandatory fusion schemes. In a radar context,
these issues have been addressed somewhat with heuristic schemes such as validation gates [2]. In
contrast we provide a principled probabilistic, adaptive theory of sensor combination which can
account for fusion, fission and the spectrum in-between. The combination strategy is handled by
a Bayesian model selection without recourse to heuristics, and the remaining parameters can be
learned directly from the data with EM.



Figure 4: Graphical model for audio-visual inference & data association

The illustrative scenarios discussed here generalize in the obvious way to more observations. A more
challenging question is that of realistic multi-dimensional observations which depend in complex
ways on the latent state, a topic we will address in the real world application discussed next.

3 Bayesian Multi-sensory Perception for Audio-Visual Scene Understanding

To illustrate the application of these ideas to a real, large scale machine perception problem, we
consider a task inspired by [3]; that of unsupervised learning and inference with audio-visual (AV)
input. [3] demonstrated inference of an AV source location and learning of its template based on
correlations between the input from a camera and two microphones - useful for example, in telecon-
ferencing applications[6]. The AV localization part of this task (and optimal solution) is similar to
the task in psychophysics experiments such as [1]. We now tackle the bigger scene understanding
problem of inferring how the AV data should be associated (pure fusion was previously assumed),
i.e, whether the source should be associated with both modalities, or only one, or if there is no source
present at all. This is a problem of the “occlusion semantic” type as discussed previously.

3.1 Introduction

A graphical model to describe the generation of audio-visual dataD = {x1,x2,y} is illustrated in
Fig. 4. For a given frame, the discrete translationl representing the source state is selected from its
prior distributionπl and its observability in each modality(W, Z) are selected from their binomial
priors. For simplicity, we only consider source translation along the azimuth. Consider first the all
visible case(W = Z = 1). The video appearancev is sampled from a diagonal Gaussian distribution
N (v|µ, φ) with parameters defining its soft template. The observed video pixels are generated
by sampling from another GaussianN (y|Tlv,ΨI) the mean of which is the sampled appearance
translated byl using the transformation matrixTl. The latent audio signala is sampled from a zero
mean, uniform covariance Gaussian i.e.,N (a|0, ηI). The time delay between the signals at each
microphone is drawn as a linear function of the translation of the sourceN (t|αl+β, ω). On the basis
of the latent signal and the delay, the observation at each microphone is generated by sampling from a
uniform diagonal Gaussian with the meana, shiftedτ samples relative to each other;N (x1|a, v1I),
N (x2|Tta, v2I). If the video modality is to be occluded(Z = 0), the observed video pixels are
drawn from a Gaussian background distributionN (y|γ1, εI) independently of latent state and audio
data. If the audio modality is to be silent(W = 0), the samples at each speaker are drawn from
Gaussian background distributionsN (xi|0, σiI) independently of each other, the latent state and
the video data. The joint probability of the model therefore factorizes as



p(x1,x2,y,a, t, l,v, W, Z) = p(x1|W,a)p(x2|W,a, t)p(t|l)p(y|Z,v, l)p(v)p(a)p(l)p(W)p(Z)

= N (x1|a, v1)
WN (x1|0, σ1)

(1−W )N (x2|Tta, v2)
WN (x2|0, σ2)

(1−W )

· N (a|0, η)p(W)N (y|Tlv, ΨI)ZN (y|γ1, εI)(1−Z)N (v|µ, φ)p(Z)p(l)

3.2 Inference

The posterior marginal of interest for the scene interpretation task is that of the discrete location and
visibility structure variablesp(l, W, Z|D). Because of the linear-Gaussian structure of the model, the
latent appearance variablesa andv can be analytically integrated, leaving only the inter-microphone
delayt and source locationl to be summed out numerically. Conditioned on the fused model, and
other discrete variables(Z = 1, W = 1, t, l) the posteriors over the latent signals are Gaussian,
N (a|µa|x,t, νa) andN (v|µv|y,l, νv), with precision and mean given byµa|x,t = v−1

a (λ1ν1x1 +
λ2ν2TT

t x2), νa = η + λ2
1ν1 + λ2

2ν2, µv|y,l = ν−1
v (φµ + TT

l Ψy), νv = φ + Ψ. The marginal
video likelihood is also Gaussian withµy|l = Tlµ, νy|l = (Ψ−1 + Tlφ

−1
s TT

l )−1. Expressions for
the posterior of the fully fused model and the source location (Eq. 3) and the posterior of the fully
fissioned model (Eq. 4) can be derived in terms of these statistics.

p(l, W = 1, Z = 1|D) ∝
(∫

v

p(y,v|l, Z = 1)

)(∑
t

∫
a

p(x1,x2,a, t|l, W = 1)

)
p(W=1, Z = 1, l)

∝
(
N (y|µy|l, νy|l)

)(∑
t

p(t|l, D)exp(µT
a|t,xνaµa|t,x)

)
πlπwπz (3)

p(l, W = 0, Z = 0|D) ∝ p(x|W = 0)p(y|Z = 0)p(W = 0, Z = 0)p(l)

= N (x1|0, σ1I)N (x2|0, σ2I)N (y|γ1, εI)πl(1− πw)(1− πz) (4)

For a single observed modality, the posterior is a mixture of these terms in a similar manner to Eqs. 1.

3.3 Learning

All the parameters in this modelθ = {λ1, λ2, ν1, ν2, η, α, β, ω, πl, µ, φ, Ψ, πw, πz, γ, ε, σ1, σ2} are
jointly optimized by a standard EM procedure of alternately inferring the posterior distribution
q(H|D) over hidden variablesH = {a,v, l, t, W, Z} given the observed dataD = {x1,x2,y}
and optimizing the expected complete log likelihood or free energy∂

∂θ

∫
H

q(H|D)lg p(H,D)
q(H|D) . As

this is a complex model of many parameters, in the interest of space, we present just two informa-
tive updates2. Eq. 5 gives the update for the meanµ of the source visual appearance distribution in
terms of the posterior meanµj

v|y,l of the video appearance given the dataDj for each framej and
translationl, as inferred during the E step. Intuitively, the result is a weighted sum of the appearance
inferences over all frames and transformations, where the weighting is the posterior probability of
transformation and visibility in each frame.Nf specifies the number of samples per audio frame.

µ ←
∑

j,l p(l, Z = 1|Dj)µj
v|y,l∑

j p(Z = 1|Dj)
(5) σ−1

i ←
∑

j q(W = 0|Dj)(xj
i )

T xj
i

Nf

∑
j q(W = 0|Dj)

(6)

The scalar precision parameter of background noise is given by Eq. 6. Again, it is intuitive that
the estimate of the background variance should be a weighted sum of square signals at each frame
where the weighting is the posterior probability of the source being silent in that frame. Note that
because of the probabilistic formulation, the updates still work and make intuitive sense even if at
some point during learning, all frames in the sequence are inferred with near certainty to be visible
or not, though care must be taken in the numerical implementation.

2Full E and M step derivations are attached as supplementary material



Figure 5: Audio-visual data association & inference results. Video samples (a) and audio data (b)
from a sequence where the user is first visibly walking and speaking, then hidden but still speaking,
and finally visible and walking but silent. (c) Posterior probability of visibility (dark) and audibility
(light) during the sequence. (d) Posterior probability of source location during the sequence. (e)
initial and (f,g) final video appearance parameters after learning.

3.4 Demonstration

Results for an AV sequence after 20 cycles of EM are illustrated in Fig. 5. In this sequence, the
user is initially walking and talking, then hides from the camera while continuing to speak and then
continues to walk while remaining silent. Fig. 5(a) illustrates three representative video frames from
each of the described segments of the sequence and Fig. 5(b) illustrates the averaged audio input
waveform. The posterior probability of the observability structure variables(W, Z) are shown in
5(c). The more reliable video modality is correctly inferred to be observable at the appropriate
times. On the basis of the much noisier audio observations, the source is correctly inferred to be
silent during the appropriate period. The fluctuations in the inference about audibility of the source
in the rest of the sequence is appropriate behavior for the model as they are almost always at the
pauses intrinsic to speech data, during which the observations at the microphones are uncorrelated
background noise. To explicitly identify contiguous periods of speech including pauses, the current
approach of treating each frame independently would need to be extended to include a suitable
Markov model over the frames. The posterior log probability of the source location at each frame is
visible in Fig. 5(d) - it is strongly peaked at the correct azimuth while the user is visible, and peaked
less strongly about the correct location while the user is only audible.

This model retains all the properties of the inspiring formulation[3] which allow most of the ex-
pensive E and M step computations to be expressed in terms of FFTs. This enables very quick
processing of 22 frame-cycles per second in matlab for data consisting of 120x100 pixel images and
1000 sample audio frames3, allowing real time learning and inference.

To cope with intermittent cues, previous multi-modal machine perception systems in this context
have relied on observations of discrepant modalities providing uninformative likelihoods, [6, 3],
which may not always be the case. For example, the pure fusion model used in[3] fails in the illus-
trated video sequence. When the subject is audible but not visible, the visual inference of the next
best location (the filing cabinet) dominates that of the audio, instead of being discounted due to the
poor match of learned visual template and Bayesian Occam’s razor. Importantly, by explicitly infer-
ring association, the model “knows” when observations arise from the source of interest or not. This

3Video clip attached as supplement. Further examples and matlab code at http://<anonymized>



is important for models attempting to infer higher level structure in the data. For example, a speech
transcription model should not associate a nearby background conversation of poorly matching tem-
plate and uncorrelated spatial location with the visible user when he is silent. Finally, in contrast
to data association methods studied in other fields [2], our model is more principled in formulation
and can work directly with the data rather than candidate observations; hence, using signature or
template information in a unified way along with correlation.

4 Discussion

In this paper, we introduced a principled formulation of multi-sensor perception in the framework of
Bayesian inference and model selection in probabilistic graphical models. Bayesian models of multi-
sensorfusionhave previously been applied in machine perception applications and understanding
human perception. However, for sensor combination with real world data, extra inference in the form
of data association is necessary as most pairs of signals should not actually be integrated. In many
cases, deciding how the observations should be associated is in itself important for understanding
the higher level structure of the observed data.

Investigations of human multi-sensory perception have reported robust discounting of discrepant
cues [7, 4] but principled theory to explain this has been lacking. We envisage that our theory can
be used to understand a much greater range of integrative and segregative perceptual phenomena
in a unified way - including, for the first time, higher level perceptual association. Performing
psychophysical experiments to investigate whether human perceptual association is consistent with
the optimal theory described here is a major research theme which we are currently investigating.

In the case of machine perception, the type of model described generalizes existing integrative mod-
els and provides a principled solution to questions of sensor combination including use of signature,
fusion, fission and points between. As our AV application illustrates, computing the exact poste-
rior over latent source and data association for real problems is potentially real-time even before
employing approximations. The major complicating extension, which we have not considered here
on a large scale, is that of multiple objects, potentially observed simultaneously with each sensor.
In this case, the computation required for exhaustive reasoning grows exponentially in the maxi-
mum number of objects; so for more than a few objects the simple strategy employed here is not
viable. For these problems, we are investigating using approximate greedy inference to identify the
multi-modally observed objects one at a time in order of best correlation along the lines of [9].
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Appendix: Equations

Inference

The joint distribution and posterior distributions can be factored as follows

p(x1,x2,y,a, t, l,v,W, Z) = p(x1x2|t,W,a, l)p(y|v, Z, l)p(W,Z,v,a, l, t)
= p(x1|W,a)p(x2|W,a, t)p(t|l)p(y|z, v, l)p(a)p(v)p(l)p(W )p(Z)

= N (x1|λ1a, ν1)wN (x1|0, σ1)(1−w)N (x2|λ2Tta, ν2)wN (x2|0, σ2)(1−w)

·N (t|αl + β, ω)N (y|Tlv,Ψ)zN (y|γ, ε)(1−z)

·N (a|0, η)N (v|µ, φ, )πlπwπz

p(a,v, t, l,W, Z|D) = p(v|l,D)p(a|t, D)p(t|l,D)p(t, l,W,Z|D)

Pre-transformation signals

The posterior over pre-transformation signals are products of Gaussians and therefore Gaussian.
Define also for brevity,z ≡ (Z = 1), z ≡ (Z = 0) andw ≡ (W = 1), w ≡ (W = 0).

p(v|l,y, z) ∝ N (y|Tlv,Ψ)N (v|µ, φ)
= N (v|µv|l, νv)

νv|l,z = φ + Ψ

µv|l,z = (νv|l,z)−1(φµ + TT
l Ψy)

p(a|t, r,x1,x2, w) ∝ N (x1|λ1a, ν1)N (x2|λ2Tta, ν2)N (a|0, η)
= N (µa|t,w, va|w)

νa|w = λ2
1ν1 + λ2

2ν2 + η

µa|t,w = (νa|w)−1(λ1ν1x1 + λ2ν2TT
t x2)

Misc

Marginal likelihood of the video is also gaussian

p(y|l, z) =
∫
v

N (y|Tlv,Ψ)N (v|µ, φ)

= N (y|µy|l,z, νy|l,z)
µy|l = Tlµ

νy|l = (Ψ−1 + Tlφ
−1
s TT

l )−1

Inter-aural time delay

p(τ |l,x1,x2, w) ∝ p(τ |l, w)p(x1x2|τ, w)

= p(τ |l, w)
∫
a

p(x1x2a|τ, w)

∝ p(τ |l, w)exp(λ1λ2ν1ν2cτ )

cτ =
∑

i

x1,i−τx2,i/va|w



Location & structure

Consider for example the totally visible and totally non-visible cases

p(l, w, z|D) ∝ p(y|l, z)p(x1,x2|l, w)p(w, z, l)

=
(∫

v

p(y,v|l, z)
)(∫

a

∑
t

p(x1,x2,a, t|l, w)

)
p(w)p(z)p(l)

∝
(
N (y|µy|l,w, vy|l,w)

)(∑
t

p(t|l,D)exp
1
2
(µT

a|τ,wva|wµa|τ,w)

)
πlπwπz

p(l, w, z|D) ∝ p(y|l, z)p(x1,x2|l, w)p(w, z, l)
= p(x|w)p(y|z)p(w)p(z)p(l)
= N (x1|0, σ1I)N (x2|0, σ2I)N (y|γ1, εI)πlπwπz

Paramater Updates

For the video parameters, whereNxy is the number of pixels in each image andyj(i) is pixel i in
image framej.

µ ←
∑

l,j p(l, z|Dj)µj
v|l,z∑

j p(z|Dj)

φ−1 ←
∑

l,j p(l, z|Dj)diag((µj
v|l,z − µ)(µj

v|l,z − µ)T + ν−1
v|z)∑

j p(z|Dj)

γ ←
∑

j p(z|Dj)
∑

i y
j(i)

Nxy

∑
j p(z|Dj)

ε−1 ←
∑

j p(z|Dj)(yj − γ)T (yj − γ)
Nxy

∑
j p(z|Dj)

For the audio parameters, whereNf is the number of samples in each frame

η−1 ←
∑

t,j p(τ, w|Dj)(µ2
a|t,w + Tr(ν−1

a|w))

Nf

∑
j p(w|Dj)

λ1 ←
∑

t,j p(t, w|Dj)xT
1 µa|τ,w∑

t,j p(t, w|Dj)(µ2
a|τ,w + Tr(ν−1

a|w))

λ2 ←
∑

t,j p(t, w|Dj)xT
2 Tτµa|τ,w∑

t,j p(t, w|Dj)(µ2
a|τ,w + Tr(ν−1

a|τ,w))

ν−1
1 ←

∑
t,j p(t, w|Dj)((x1 − λ1µa|τ,w)2 + λ2

1Tr(ν−1
a|w))

Nf

∑
j p(w|Dj)

v−1
2 ←

∑
t,j p(t, w|Dj)((x2 − λ2Tτµa|τ,w)2 + λ2

2Tr(ν−1
a|w))

Nf

∑
j p(w|Dj)

σ−1
i ←

∑
j p(w|Dj)xT

i xi

Nf

∑
j p(w|Dj)

Audio-visual link parameters



β ←
∑

τ,l,j p(t, w, l|Dj)(t− αl)∑
j p(w|Dj)

α ←

∑
t,j,l p(τ, w, l|Dj)(lt− l

∑
t,j

p(t,w|Dj)t∑
j

p(w|Dj)
)

∑
j,l p(w, l|Dj)(l2 − l

∑
j,l

p(w,l|Dj)l∑
j

p(w|Dj)
)

ω−1 ←
∑
t,j,l

p(t, l, w|Dj)(t2 − 2ταl − 2tβ + α2l2 + 2αlβ + β2)/
∑

j

p(w|Dj)


