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Abstract

We present a probabilistic approach to shape matching whichis invariant to ro-
tation, translation and scaling. Shapes are represented byunlabeled point sets, so
discontinuous boundaries and non-boundary points do not pose a problem. Occlu-
sions, significant dissimilarities between shapes and image clutter are explained by
a ‘background model’ and hence, their impact on the overall match is limited. By
simultaneously learning a part decomposition of both shapes, we are able to suc-
cessfully match shapes that differ as a result of independent part transformations
– a form of variation common amongst real objects of the same class. The effec-
tiveness of the matching algorithm is demonstrated using the benchmark MPEG-7
data set and real images.

1 Introduction

In many object recognition problems, the examples are most easily disambiguated on
the basis ofshape- as opposed to properties such as color or texture. Content-based
image retrieval (CBIR) is a prime example of an application that can benefit from shape
information. However, defining a shape descriptor and associated matching algorithm
that is both generic and discriminative is a difficult challenge. Despite recent devel-
opments in this area, the available techniques typically struggle to match perceptually
similar shapes in at least one of the following cases:

Occlusion: one or both shapes are partially occluded.

Nonlinearity: a good match is not possible using linear transformations.

Localized dissimilarity: e.g.a ‘feature’ of one shape is not present or is significantly
different on the other shape.

Discontinuity: the observed part of a shape is only available as an unorderedpoint set.



Consideration of all possibleocclusionstates is often prohibitively expensive.Non-
linear differences in shape can be dealt with by introducing nonlinear transformations
into the matching process (e.g. [2, 13]). Unfortunately, shape similarity assessments
based on any particular class of transformations will inevitably fail to agree with hu-
man judgement in some cases. The challenge is to identify thecommonly encountered
transformations that we expect shape to be invariant to (or partially invariant to) and
include these in our shape matching algorithm.Localized dissimilaritiesare often re-
sponsible for low global similarity scores between perceptually similar shapes. It is
therefore important to limit the impact of any region of the shapes on the overall sim-
ilarity score. Most matching algorithms assume the shape boundary iscontinuous–
even those which use point representations generally rely on the cyclic ordering of the
points. Ghosh and Petkov [6] note that continuous contours cannot be extracted from
many real images and argue for matching techniques which do not require the continu-
ity assumption. Shape Contexts [2] and Distance Multisets [7] are two such methods.
The latter seems to perform better [7, 6], but it is not scale invariant.

Probabilistic methods which find asoft correspondence between points [9, 11, 4]
can potentially overcome problems associated with occlusion, localized dissimilarity
and discontinuity. However, such methods have not been adopted by the shape retrieval
community. This may be due to their reliance on global lineartransformations (with
the exception of [4]) which are too restrictive in many matching problems. This paper
makes two important contributions to the field of shape retrieval. Firstly, we introduce
a probabilistic approach to shape matching which overcomesmany of the difficulties
associated with deterministic algorithms. This performs well on the popular MPEG-7
“bullseye” retrieval test and is shown to correctly match objects in real images despite
partial occlusion and image clutter. Secondly, by generalizing the initial model, we
are able to learn part decompositions and soft correspondences simultaneously. This
allows us to handle cases wheredifferentparts of a shape undergodifferentlinear trans-
formations.

2 Weighted Procrustes Matching

We start by giving a brief introduction toweighted Procrustes matchingwhich is fun-
damental to our approach. Let us assume that we have two shapes, each represented
by N 2D points,X = (x1, . . . ,xN )T , Y = (y1, . . . ,yN )T ∈ RN×2, and that the
point-to-point correspondence is known to bexj ↔ yj . Intuitively, the shape of an
object should not change under translation, rotation or scaling. Therefore, a reasonable
measure of dissimilarity betweenX andY is the minimum of the weighted sum of
squared distances over corresponding point pairs:

d2(X,Y) ≡ min
s,Γ,c

N
∑

j=1

α2
j(yj − sΓxj − c)2, (1)

wheres is a scale parameter,c ∈ R2 is a translation vector andΓ(θ) is a 2D rota-
tion matrix. The weights,αj , allow us to express the relative importance of closely
matching thej-th pair of points. In this paper, we are interested in the transformation



parameters which minimize eq.(1). For 2D shapes, these can be calculated using a sim-
ple closed form expression as follows.1 Represent each 2D point as a complex number:
xj = (x

(1)
j , x

(2)
j ) → x

(1)
j + ix

(2)
j ≡ vj ∈ C, thenX → v andY → z ∈ CN . Shift v

andz such that
∑

j α2
jvj =

∑

j α2
jzj = 0 and then form the weighted shapesvα and

zα, where(vα)j ≡ αjvj . The minimizing parameters are given by

ŝ = |z∗αvα|/(v∗

αvα), θ̂ = − arg(z∗αvα), ĉ = 0, (2)

wherev∗ denotes the complex transpose ofv and, in this section only,arg(·) denotes
the complex argument.

3 Basic Probabilistic Model

We now develop a probabilistic approach to shape matching which utilizes the ideas
introduced in the previous section. The first step is to describe a model for matching
unlabeled point sets.

Each shape is represented by an arbitrary number of points. These need not belong
to the shape boundary and the ordering of the points is irrelevant. Given two such
shapes,X = (x1,x2, . . . ,xM )T ∈ RM×2 andY = (y1,y2, . . . ,yN )T ∈ RN×2

(generallyM 6= N ), our task is to define and compute the optimal match betweenX

andY. We assume that theyj are observations from a Gaussian mixture model (GMM)
[3], i.e.p(y) =

∑

k p(y|k)p(k) where eachp(y|k) is a bivariate Gaussian distribution.
The center of the Gaussianp(y|k) depends onxk, but unlike a standard GMM, the
movement of the centers is controlled by a single set of transformation parameterss, Γ
andc:

y|k ∼ N (sΓxk + c, σ2I). (3)

Note that the model can ‘delete’ some of thexk by taking the appropriatep(k) to
be zero. However, there is no such mechanism for deleting points of Y since the
model will try to explain all of the data. To rectify this, we introduce a ‘background’
componentkb to explain outliers and assume thaty|kb ∼ N (0, σ2

bI), whereσ2
b is very

large.
The model described so far is a variation of that used by Kentet. al. to match the

active sites of proteins [9]. In shape matching tasks, we have found that this approach
struggles with occlusion and local dissimilarities – the mechanism for handling out-
liers is ineffective. We modify this mechanism by introducing a variableq which takes
the valueqb (background) orqf (foreground). The joint distribution of this modified
model can be written asp(y, k, q) = p(y|k)p(k|q)p(q), where thep(y|k) remain un-
changed (c.f. eq.(3) andy|kb above). The mixture componentkb ‘belongs’ solely to
the background (i.e. p(kb|qb) = 1), whereas componentsk1, . . . , kM belong solely to
the foreground (i.e. p(k|qb) = 0 whenk 6= kb). In this model, the oldp(k) are replaced
by thep(k|qf ). To compute these, we identify eachk with the pointxk that it indexes
and take

p(k|qf ) ≡ p(xk|qf ) ≡
g(xk; µ, Σ)

∑M

k=1 g(xk; µ, Σ)
, (4)

1Eq.(1) is minimized using the approach described in [5] for standard (unweighted) Procrustes matching;
an alternative derivation involving singular value decomposition is presented in [11].



whereg(·; µ, Σ) is the density function of a bivariate Gaussian distribution. Note that
p(k|qf ) is a distribution over{1, . . . , M}, whereasp(xk|qf ) is a unimodal (yet still
discrete) distribution over{x1, . . . ,xM} ⊂ R2. We refer to the two distributions inter-
changeably.

Maximum likelihood estimates for the model parameters are found using the expec-
tation maximization (EM) algorithm [3] as follows. The value of σ2 in eq.(3) (which
reflects the predicted variation between ‘similar’ shapes)andσ2

b remain fixed through-
out. Letwkj,q ≡ p(k, q|yj) represent the probability that mixture componentk and
foreground/background= q were responsible for generating the data pointyj . The
EM updates are given by:

E-step: Update thewkj,q using the current estimates of the parameterss, Γ, c, µ, Σ
andp(q) (c.f.eqs.(3) & (4)).

wnew
kj,q =

p(yj |k)p(k|q)p(q)
∑

k,q p(yj |k)p(k|q)p(q)
. (5)

M-step: Update the parameters using thewkj,q

p(q) =
1

N

∑

j,k

wkj,q , (6)

µ =

∑

j,k wkj,qf
xk

∑

j,k wkj,qf

, (7)

Σ =

∑

j,k wkj,qf
(xk − µ)(xk − µ)T

∑

j,k wkj,qf

, (8)

(s, Γ, c) = arg min
s,Γ,c

∑

j,k

wkj,qf
(yj − sΓxj − c)2. (9)

Eq.(9) is a weighted Procrustes problem that can be solved analytically as described
in Sec. 2. The initial value ofp(qb) is set at 0.001, random initialization is used for
thep(k|qf ) and the same values ofσ2 andσ2

b are used in all examples.2 In all figures,
we remove theyj that are explained primarily byqb (i.e.with arg maxq p(q|yj) = qb).
Each of the remainingyj is then assigned to anxk usingargmaxk p(xk|yj), and those
xk with noyj assigned to them are also removed. Fig. 1 shows how the model performs
on matching problems involving occlusion, discontinuity and localized dissimilarity.
The bold points are thexk that are collectively transformed to match the faintyj ; the
final matches are scaled up for clarity. See that many of theyj have been deleted in
example (a), whereas it is thexk that have been deleted in (b) and (d). In all cases,
the sampling frequency of corresponding sections is different, so there is no perfect
point-to-point match. When such a perfect match does exist,the model will find it.

Why does the modified model handle outliers more effectivelythan the simpler
model? In the simpler model, the mixture componentkb competes with the other com-
ponents directly. This reflects an assumption that each non-outlier was generated from

2The initial valuesp(k|qf) = 1/M for k = 1, . . . , M were used for the tests in Sec. 4.1 – this effectively
meansΣ = γI whereγ is very large.
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Figure 1: Examples - basic model.

a single mixture component – an assumption that is justified when matching the active
sites of proteins [9] since the ultimate aim is to recover a 1-1 mapping. In the modified
model,qb competes against the mixture model rather than the individual components.
This is consistent with the assumption that a non-outlier can be ‘generated’ by more
than one component – an assumption that is justified here since the ultimate aim is the
soft assignment itself,i.e. there is generally no 1-1 correspondence associated with the
correct match (c.f.Figs. 1-7). A further advantage of havingqb compete against a fixed
combination of the foreground components is thatp(qb) need not be large forqb to
explain outliers.

The assumed form ofp(xk|qf ) (eq.(4)) might seem unjustified, but experiments
have shown that parameterizingp(xk|qf ) in this way is preferable to learning an un-
constrained distribution. In practice,p(xk|qf ) does not become sharply peaked, en-
suring that the learnt transformation parameters depend ona large number of thexk.
Also, the EM algorithm converges quickly when the assumption is used, presumably
due to the reduction in the number of parameters that are learnt. Fig. 1b demonstrates
that disjoint clusters ofxk can remain undeleted despitep(xk|qf ) being unimodel.

4 Basic Model – Results and Examples

4.1 Shape Retrieval and Classification

The “Bullseye Test” on the MPEG-7 shape data set3 has been used extensively to assess
the performance of shape matching algorithms. The data set is composed of 1400
binary images with a single shape in each image. There are 70 different classes and 20
observations in each class. Some of the shapes are shown in Figure 2. In the bullseye
test, a shape is presented as a query and the top 40 matches areretrieved (from the
entire data set – the test shape is not removed). The task is repeated for each shape and
the number of correct matches (out of a maximum possible 20) are noted. A perfect
performance results in1400× 20 = 28000 matches. Results are given as a percentage
of this maximum score.

3http://www.cis.temple.edu/∼latecki/research.html#shape



Figure 2: Example shapes from the MPEG-7 data set.

To apply probabilistic matching to this problem, we must first address the issue
of initialization. The EM algorithm often finds the correct match despite a seemingly
poor initial alignment (c.f. Figs. 1 and 3), but inevitably, sub-optimal matches (local
minima) are chosen on some occasions. It is therefore important to find as good an
initial alignment as possible. The following procedure is afast, simple heuristic which
satisfies this objective. Shapes (represented by the pixels/points they contain) are cen-
tered, aligned along their first principal component, and then scaled to have the same
interior area. The alignment between two of these normalized shapes is found using a
25 point boundary representation of each shape. The first shape is compared to 32 poses
of the second shape (16 rotation states and reflection). The best pose is selected using
the sum of squared distances over each point of the first shapeand the closest point to
it on the second. The transformations associated with the chosen alignment (including
the initial normalizing transformations) are then appliedto 100 point representations of
the original shapes to which the probabilistic matching procedure is applied. Note that
the sole objective of this initialization algorithm is to find sufficiently goodmatchesas
often as possible, so that the local minimum found by the EM algorithm corresponds
to the correct match. Various fast alignment techniques (e.g.[12]) will find very good
matchesquite often, but they will also choose nonsensical matches for shapes that
probabilistic matching can handle given a suitable initialalignment (c.f.Fig. 1d).

The dissimilarity score between two shapes is based on the hard assignment of un-
deletedyj to undeletedxk (Sec. 3). Specifically, the average squared distance between
matched point-pairs (post transformation) is multiplied by a penalty termλa, wherea
is the number of deletedxk andλ > 1 is a constant (set at1.1 in our experiments):

dX(Y) ≡

(

1

L

L
∑

l=1

|xlx − yly |
2

)

λa. (10)

The pair(lx, ly) indexes the matched pairs ofX andY andL is the total number of
matched pairs.4 The EM algorithm converges after 5 iterations on average.

4L need not be100-a since multipleyj can be assigned to onexk.



Table 1: Bullseye scores for best performing algorithms.
Score (%) 78.18 78.38 78.80 79.36 84.33
Reference [13] [7] [8] [14] [1]

Table 1 shows, to the best of our knowledge, the best known results for the bullseye
testusing a single shape descriptor and basic nearest neighbor retrieval. Our proba-
bilistic approach achieved a score of 79.44% using the dissimilarity measure defined in
eq. 10 and nearest neighbor retrieval. This score is second only to the method proposed
by Attalla and Siy [1] which is strictly dependent on continuous boundary information.
Whilst we did utilize boundary information to some extent here – to ensure that the 100
points were equally spaced along the boundary,5 the key observation is that probabilis-
tic matching remains applicable and effective when no such information is available
(c.f.Figs. 1c, 3 and 7).

By removing the query shape from the database and retrievingjust one shape, we
can compute the leave-one-out classification accuracy of a 1-nearest neighbor classifier.
Our algorithm misclassified only 35 shapes out of 1400. Again, only the technique
described in [1] has achieved a higher level of accuracy ([12]: 60 errors, [14]: 43
errors, [1]: 33 errors).

4.2 Matching Shapes in Real Images

The MPEG-7 data set consists of binary images, each containing a single object whose
continuous boundary is easily extracted. Since real imagesrarely fall into this category,
it is important that a shape matching algorithm can operate effectively on partial, noisy
shape information. Fig. 3 demonstrates that our model can beused to successfully
match shapes in real images despite occlusion, clutter and sub-optimal performance of
the edge detector.6 The correct match in Fig. 3a involves significant deletion from both
point sets (the corkscrew’s blade in the first image and the pencil in the second). Fig.
3b demonstrates a ‘query by example’ problem where a sketch of the required object
is found in a cluttered image.

4.3 Part-based variation

In Fig. 4 (first two rows) we consider shapes whose parts have undergone different
transformations. The basic model has no way of recognizing part structure and at best
will identify localized dissimilarities (Fig. 4c). This limitation is important since part-
based variation is commonly observed between perceptuallysimilar shapes (c.f.Figs. 5
and 7). As we shall see in the next section, by introducingq and the ‘discrete Gaussian
assumption’ forp(xk|qf ), we have done all the hard work required for the construction
of a part-based model.

5Note that area-based scale normalization can always be usedwhen complete boundaries are available.
6The output of edge detectors is often noisy, particularly inCBIR where it is unrealistic to choose different

parameters for each image.
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Figure 3: Matching shapes in real images.

5 Part-based Model

The model introduced in Sec. 3 can be seen as a special instance of a part-based model:
it has one background part (qb) and one foreground part (qf ). We now consider models
with one background part,qb, andQ foreground parts,q1

f , . . . , qQ
f , where

y|k, ql
f ∼ N (slΓlxk + cl, σ

2I). (11)

Thus, the part ‘label’ql
f indexes transformation parameters where a (foreground) part

is implicitly defined as those points ofX that undergo the same transformations. Note
that parts ofX are only defined in the context of a givenY thatX is being matched
to. This is in complete contrast to methods which seek an independent part decompo-
sition of each shape (e.g.[10]). The simplest way to proceed is to writep(yj , k, q) =
p(yj |k, q)p(k, q) and learn every entry of thep(k, q) matrix. Our experiments have
indicated that this approach learns parts that are widely dispersed around the shape,
i.e. the decomposition that maximizes the expected likelihood does not agree with the
intuitive decomposition. Here, as before, we writep(k, q) = p(k|q)p(q) and use the
Gaussian assumption introduced in Sec. 3 (eq.(4)) which will encourage parts to have
spatial coherence:

p(k|ql
f ) ≡ p(xk|q

l
f ) ≡

g(xk; µl, Σl)
∑M

k=1 g(xk; µl, Σl)
. (12)

This assumption means that thexk themselves are generated by a GMM withQ com-
ponents. However, note that this GMM is embedded in the larger model. Using EM
to maximize the expected likelihood will balance this GMM’sdesire for coherent parts
against the need for the parts and transformations to explain the real data (theyj).

There are nowl lots of parameterssl, Γl, cl, µl, Σl, andp(ql
f ) to update. The up-

date equations themselves (eqs. 5-9) remain the same exceptthat p(yj |k) in eq.(5)
becomesp(yj |k, q). This highlights the fact that eachxk (k 6= kb) now belongs to
everyql

f to some extent – a soft assignment of mixture components to parts. The initial
p(q) are chosen at random, except forp(qb) which is initialized to 0.001. We assume
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Figure 4: Part-based variation.

that the optimal number of parts,Q, is known; techniques for learningQ are discussed
in Sec. 7.

To visualize the matches found using this model, we first delete unmatched points
using the procedure described in Sec. 3. This leaves a subsetof theyj , each element
of which has been assigned to an undeletedxk. The part membership of anxk (and
thoseyj assigned to it) is given byarg maxq p(xk|q). Finally, eachxk is transformed
using the transformation parameters of the part to which it belongs. Fig. 4 (third row)
demonstrates that the new model can correctly match shapes whose parts have under-
gone independent transformations. The learnt decompositions (bottom two rows of
Fig. 4) show that the matches were achieved by learning the natural part structure of
the objects. We now consider more challenging problems, theresults of which give
valuable insight into the model’s behavior.
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Figure 5: Part-based matching of some MPEG-7 shapes.

6 Part-Based Model – Examples

Fig. 5 shows the results achieved on pairs of shapes from the MPEG-7 data set. All
shapes are represented by the same number of points (120), enabling us to use standard
Procrustes matching to find the initial alignments [12]. Observe that the learnt parts
are either ‘natural parts’ (Fig. 5a), composites of naturalparts (Figs. 5c, 5d), or ‘minor
natural parts’ that arise through recursive decompositionof the shape (Fig. 5b). Thus,
despite the model not always learning the most obvious decomposition, the learnt parts
do correspond to perceptually meaningful elements of the shapes. This suggests that
shape similarity measures based on our approach may mimic human judgement more
accurately than standard nonlinear methods. The challenges associated with defining
such measures are discussed in Sec. 7.

Different aspects of the model’s behavior can be explained using specific examples.
The tendency to learn composites of natural parts is particularly clear for the horse
shapes. Here, the legs and bodies of the horses can be well matched by a single trans-
formation, so the similarity between these regions can be established without learning
the composite parts. Indeed, the very fact that these regions can be well matched means
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Figure 7: Matching shapes in real images.

that there is insufficient variation to learn the composite parts. With the hammers, there
is only significant variation on one side of the head and consequently this minor part is
recognized. There are various examples of the algorithm deleting significant sections
of the shape to achieve a good match, most notably: the horse’s tail, the deer’s antlers
and one end of the beetle’s body (Fig. 6). In Fig. 6, the model has paired together legs
which are spatially separated. Here, the mechanism for encouraging spatial coherence
is ineffective and the model has learnt part composites thatare counter-intuitive. If
seven parts are used, the intuitive decomposition (a body and six legs) is not learnt,
suggesting that there is insufficient variation of the real parts. It is interesting to con-
sider how an algorithm including part number selection should behave in this case and
how such behavior could be achieved (c.f.Sec. 7).

Fig. 7 demonstrates that the model can be used to successfully match shapes in real
images despite part-articulation, occlusion and sub-optimal performance of the edge
detector.



7 Summary and Discussion

We have presented a probabilistic approach to shape matching which is invariant to
rotation, translation and scaling. The algorithm operateson unlabeled point sets of
arbitrary size and uses a background model to handle occlusion, significant dissimilar-
ities between shapes and image clutter. By simultaneously learning a part decomposi-
tion of both shapes, we are able to successfully match shapesthat differ as a result of
independent part transformations.

The examples in this paper indicate that our method overcomes the problems asso-
ciated with state-of-the-art techniques. However, further work is required to produce a
complete matching algorithm with an associated similarityscore. Choosing the num-
ber of parts is the most important issue still to be addressed. We are assessing the
performance of penalized log-likelihood approaches7 on this model selection problem.
Currently, there is no ‘cost’ associated with the part transformations. Thus, the degree
of part rotation, scaling and translation does not alter thelikelihood of X generating
Y. It may be appropriate to put prior distributions over the transformation parameters
that encourage small transformations. These should reflectthe fact that we are not con-
cerned about transformations common to all parts, but rather the difference between
transformations applied to different parts. Initialization is another important issue. The
final match is sensitive to the initial values ofp(k|q) andp(q). Selecting these val-
ues based on a standardQ-component GMM for thexk works well when this naive
clustering approximates the part structure. The EM algorithm often finds the correct
match despite a seemingly poor initial alignment (c.f. Figs. 1 and 4), but inevitably,
sub-optimal matches (local minima) are chosen on some occasions. Basic matching
algorithms (c.f. Fig. 5) can provide good initial alignments. Since the EM algorithm
converges quickly when a good match exists (generally<20 iterations), we need not
restrict ourselves to a single initial alignment for each pair of shapes.
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