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Abstract

We present a probabilistic approach to shape matching visiokiariant to ro-
tation, translation and scaling. Shapes are representedlbipeled point sets, so
discontinuous boundaries and non-boundary points do re& agroblem. Occlu-
sions, significant dissimilarities between shapes and énchgter are explained by
a ‘background model’ and hence, their impact on the overatchis limited. By
simultaneously learning a part decomposition of both skawe are able to suc-
cessfully match shapes that differ as a result of indeperutemn transformations
— a form of variation common amongst real objects of the sdassc The effec-
tiveness of the matching algorithm is demonstrated usiadgpgmchmark MPEG-7
data set and real images.

1 Introduction

In many object recognition problems, the examples are naslyedisambiguated on
the basis o6hape- as opposed to properties such as color or texture. Cohtesdd
image retrieval (CBIR) is a prime example of an applicattwat tan benefit from shape
information. However, defining a shape descriptor and datemtmatching algorithm
that is both generic and discriminative is a difficult chaie. Despite recent devel-
opments in this area, the available techniques typicallygsiie to match perceptually
similar shapes in at least one of the following cases:

Occlusion: one or both shapes are partially occluded.
Nonlinearity: a good match is not possible using linear transformations.

Localized dissimilarity: e.g.a ‘feature’ of one shape is not present or is significantly
different on the other shape.

Discontinuity: the observed part of a shape is only available as an unorgdenetset.



Consideration of all possiblecclusionstates is often prohibitively expensivélon-
linear differences in shape can be dealt with by introducing nealirtransformations
into the matching procesg.g.[2, 13]). Unfortunately, shape similarity assessments
based on any particular class of transformations will itehly fail to agree with hu-
man judgement in some cases. The challenge is to identifydhmenonly encountered
transformations that we expect shape to be invariant to ddigtly invariant to) and
include these in our shape matching algoritHrocalized dissimilaritiesre often re-
sponsible for low global similarity scores between peraelty similar shapes. It is
therefore important to limit the impact of any region of th@pes on the overall sim-
ilarity score. Most matching algorithms assume the shapmdary iscontinuous-
even those which use point representations generally retii@cyclic ordering of the
points. Ghosh and Petkov [6] note that continuous contcamaat be extracted from
many real images and argue for matching techniques whiclotieequire the continu-
ity assumption. Shape Contexts [2] and Distance Multis@taufe two such methods.
The latter seems to perform better [7, 6], but it is not saabaiiant.

Probabilistic methods which find soft correspondence between points [9, 11, 4]
can potentially overcome problems associated with oamhydocalized dissimilarity
and discontinuity. However, such methods have not beentaddyy the shape retrieval
community. This may be due to their reliance on global lineansformations (with
the exception of [4]) which are too restrictive in many matghproblems. This paper
makes two important contributions to the field of shapeee#l. Firstly, we introduce
a probabilistic approach to shape matching which overcamaeyy of the difficulties
associated with deterministic algorithms. This perfornedl wn the popular MPEG-7
“bullseye” retrieval test and is shown to correctly matcheots in real images despite
partial occlusion and image clutter. Secondly, by gengraji the initial model, we
are able to learn part decompositions and soft corresp@edesimultaneously. This
allows us to handle cases wheliferentparts of a shape underddferentlinear trans-
formations.

2 Weighted Procrustes Matching

We start by giving a brief introduction tweighted Procrustes matchimghich is fun-
damental to our approach. Let us assume that we have twosstegmh represented
by N 2D points,X = (x1,...,xx)7, Y = (y1,...,yn)T € RY*2 and that the
point-to-point correspondence is known toe « y;. Intuitively, the shape of an
object should not change under translation, rotation dirgrarherefore, a reasonable
measure of dissimilarity betweeX andY is the minimum of the weighted sum of
squared distances over corresponding point pairs:

N
dQ(X, Y) = ir%uéz a?(yj —sI'x; — c)2, Q)
The

wheres is a scale parametet, € R? is a translation vector anB(6) is a 2D rota-
tion matrix. The weightse;, allow us to express the relative importance of closely
matching thej-th pair of points. In this paper, we are interested in thesfarmation



parameters which minimize eq.(1). For 2D shapes, these&aalbulated using a sim-
ple closed form expression as follow&epresent each 2D point as a complex number:

X; = (x§1),x§2)) — x;l) + ixlgg) =v; € C,thenX — vandY — z € CV. Shiftv
andz such thafy~; ajv; = 3 afz; = 0 and then form the weighted shapes and
zo, Where(vy,); = aj;v;. The minimizing parameters are given by

§=|zival/(Viva), 0= —arg(ziva), &=0, )

wherev* denotes the complex transposevoéind, in this section onlyrg(-) denotes
the complex argument.

3 Basic Probabilistic Model

We now develop a probabilistic approach to shape matchinghaiitilizes the ideas
introduced in the previous section. The first step is to desa model for matching
unlabeled point sets.

Each shape is represented by an arbitrary number of poih&selneed not belong
to the shape boundary and the ordering of the points is waale Given two such
shapesX = (x1,%2,...,xp)7 € RM*2 andY = (y1,y2,...,yn)? € RV*2
(generallyM # N), our task is to define and compute the optimal match bet@een
andY. We assume that the; are observations from a Gaussian mixture model (GMM)
[3],i.e.p(y) = >, p(y|k)p(k) where eachp(y|k) is a bivariate Gaussian distribution.
The center of the Gaussiarfy|k) depends orxy, but unlike a standard GMM, the
movement of the centers is controlled by a single set of teamsation parameters I’
andc:

ylk ~ N (sTxy + ¢, o*I). (3)

Note that the model can ‘delete’ some of the by taking the appropriatg(k) to
be zero. However, there is no such mechanism for deletingtpaif Y since the
model will try to explain all of the data. To rectify this, wetroduce a ‘background’
component; to explain outliers and assume that;, ~ N (0, o21), whereo? is very
large.

The model described so far is a variation of that used by Kerdl.to match the
active sites of proteins [9]. In shape matching tasks, we feund that this approach
struggles with occlusion and local dissimilarities — thectranism for handling out-
liers is ineffective. We modify this mechanism by introdugia variabley which takes
the valueg, (background) og; (foreground). The joint distribution of this modified
model can be written as(y, k, q) = p(y|k)p(k|q)p(q), where thep(y|k) remain un-
changed ¢.f. eq.(3) andy|k, above). The mixture componehs ‘belongs’ solely to
the backgroundife. p(ks|gs) = 1), whereas components, . . ., kas belong solely to
the foregroundi(e. p(k|q,) = 0 whenk # k). In this model, the olg (%) are replaced
by thep(k|gr). To compute these, we identify eaklwith the pointx,, that it indexes
and take

_ o g(xe . )
p(klar) = p(xklar) = =57 ,
o1 (X551, )

1Eq.(1) is minimized using the approach described in [5] fandard (unweighted) Procrustes matching;
an alternative derivation involving singular value decasifion is presented in [11].

(4)




whereg(-; u, X) is the density function of a bivariate Gaussian distributiblote that
p(k|qr) is a distribution oveq1,..., M}, whereap(xx|qr) is a unimodal (yet still
discrete) distribution ovefxy, . .., x5} C R2. We refer to the two distributions inter-
changeably.

Maximum likelihood estimates for the model parametersawad using the expec-
tation maximization (EM) algorithm [3] as follows. The valofo? in eq.(3) (which
reflects the predicted variation between ‘similar’ shapes)o? remain fixed through-
out. Letwsy;, = p(k,qly;) represent the probability that mixture componkrand
foreground/backgroungt ¢ were responsible for generating the data pgint The
EM updates are given by:

E-step: Update thewy; , using the current estimates of the parameteis c, p, &
andp(q) (c.f.egs.(3) & (4)).

ynew — _ PER)p(Rla)p(a) (5)
a3 psRp(Kl)p(a)

M-step: Update the parameters using thg; ,

1
plg) = N Zwkj,q, (6)
7,k
g = Ak VkarXE -
Zj,k Wkj,qr

Dk Wiy (Xa — 1) (x — p)”

X = . : (8)
Zg‘,k Wkj,q5
(s,T,c) = arg E}ifgzwkm (y; — sT'x; — c)2. ©)
Lo b

Eq.(9) is a weighted Procrustes problem that can be solvalytaally as described
in Sec. 2. The initial value of(g,) is set at 0.001, random initialization is used for
thep(k|q;) and the same values of ando? are used in all examplésin all figures,
we remove the; that are explained primarily by, (i.e. with arg max, p(¢qly;) = g»)-
Each of the remaining; is then assigned to at), usingarg maxy, p(xx|y,), and those
x, With noy; assigned to them are also removed. Fig. 1 shows how the medetms
on matching problems involving occlusion, discontinuityddocalized dissimilarity.
The bold points are the;, that are collectively transformed to match the famt the
final matches are scaled up for clarity. See that many ofthkeave been deleted in
example (a), whereas it is thg, that have been deleted in (b) and (d). In all cases,
the sampling frequency of corresponding sections is differso there is no perfect
point-to-point match. When such a perfect match does gkistnodel will find it.

Why does the modified model handle outliers more effectivikefn the simpler
model? In the simpler model, the mixture compongntompetes with the other com-
ponents directly. This reflects an assumption that eachoudirer was generated from

2The initial valuep(k|qs) = 1/M fork = 1,..., M were used for the tests in Sec. 4.1 —this effectively
means: = vI where~ is very large.



Figure 1: Examples - basic model.

a single mixture component — an assumption that is justifieenamatching the active
sites of proteins [9] since the ultimate aim is to recoverlrhapping. In the modified
model,q, competes against the mixture model rather than the indaVidomponents.
This is consistent with the assumption that a non-outlier loa ‘generated’ by more
than one component — an assumption that is justified here fiecultimate aim is the
soft assignment itself,e. there is generally no 1-1 correspondence associated véth th
correct matchd.f. Figs. 1-7). A further advantage of havipgcompete against a fixed
combination of the foreground components is th@f,) need not be large fag, to
explain outliers.

The assumed form af(xx|gs) (eq.(4)) might seem unjustified, but experiments
have shown that parameterizipgxy|qy) in this way is preferable to learning an un-
constrained distribution. In practice(xx|qy) does not become sharply peaked, en-
suring that the learnt transformation parameters deperallarge number of th;,.
Also, the EM algorithm converges quickly when the assunmpisoused, presumably
due to the reduction in the number of parameters that aretlelig. 1b demonstrates
that disjoint clusters ak;, can remain undeleted despitéx;|q;) being unimodel.

4 Basic Model — Results and Examples

4.1 Shape Retrieval and Classification

The “Bullseye Test” on the MPEG-7 shape dat& bes been used extensively to assess
the performance of shape matching algorithms. The datasssamposed of 1400
binary images with a single shape in each image. There ardféfedt classes and 20
observations in each class. Some of the shapes are showguire2. In the bullseye
test, a shape is presented as a query and the top 40 matchesrigneed (from the
entire data set — the test shape is not removed). The tagkdatedl for each shape and
the number of correct matches (out of a maximum possible 20hated. A perfect
performance results itd00 x 20 = 28000 matches. Results are given as a percentage
of this maximum score.

Shttp://www.cis.temple.eduflatecki/research.html#shape



Figure 2: Example shapes from the MPEG-7 data set.

To apply probabilistic matching to this problem, we musttfaddress the issue
of initialization. The EM algorithm often finds the correcatoh despite a seemingly
poor initial alignment ¢.f. Figs. 1 and 3), but inevitably, sub-optimal matches (local
minima) are chosen on some occasions. It is therefore irapotd find as good an
initial alignment as possible. The following procedure fast, simple heuristic which
satisfies this objective. Shapes (represented by the fprétts they contain) are cen-
tered, aligned along their first principal component, arehthcaled to have the same
interior area. The alignment between two of these normakbapes is found using a
25 point boundary representation of each shape. The firgeshkaompared to 32 poses
of the second shape (16 rotation states and reflection). @steplose is selected using
the sum of squared distances over each point of the first sirapthe closest point to
it on the second. The transformations associated with tbearhalignment (including
the initial normalizing transformations) are then apptied 00 point representations of
the original shapes to which the probabilistic matchingcpdure is applied. Note that
the sole objective of this initialization algorithm is todisufficiently goodnatchesas
often as possibleso that the local minimum found by the EM algorithm corresio
to the correct match. Various fast alignment technigees.[12]) will find very good
matchesquite often but they will also choose nonsensical matches for shapas th
probabilistic matching can handle given a suitable ingla@inment €.f. Fig. 1d).

The dissimilarity score between two shapes is based on tidealsaignment of un-
deletedy; to undeleteck, (Sec. 3). Specifically, the average squared distance betwee
matched point-pairs (post transformation) is multipligtabpenalty term\*, wherea
is the number of deletesl, and\ > 1 is a constant (set at1 in our experiments):

L
dx(Y) = <% > i, - yly|2> A (10)
=1

The pair(l,,1,) indexes the matched pairs &f andY and L is the total number of
matched pairé.The EM algorithm converges after 5 iterations on average.

4L need not be 00-a since multipley ; can be assigned to ong,.



Table 1: Bullseye scores for best performing algorithms.
Score (%) | 78.18 78.38 78.80 79.36 84.33
Reference| [13] | [7] [8] [14] | [1]

Table 1 shows, to the best of our knowledge, the best knowuttseer the bullseye
testusing a single shape descriptor and basic nearest neighétoieval Our proba-
bilistic approach achieved a score of 79.44% using therdikmiity measure defined in
eg. 10 and nearest neighbor retrieval. This score is seadgdathe method proposed
by Attalla and Siy [1] which is strictly dependent on contius boundary information.
Whilst we did utilize boundary information to some extentdhe to ensure that the 100
points were equally spaced along the boundahg key observation is that probabilis-
tic matching remains applicable and effective when no saébrination is available
(c.f.Figs. 1c,3and 7).

By removing the query shape from the database and retrigygt@ne shape, we
can compute the leave-one-out classification accuracy ofeatest neighbor classifier.
Our algorithm misclassified only 35 shapes out of 1400. Agaiiy the technique
described in [1] has achieved a higher level of accuracy]([6® errors, [14]: 43
errors, [1]: 33 errors).

4.2 Matching Shapes in Real Images

The MPEG-7 data set consists of binary images, each congg@rsingle object whose
continuous boundary is easily extracted. Since real imegge$y fall into this category,
it is important that a shape matching algorithm can opeffédetésely on partial, noisy
shape information. Fig. 3 demonstrates that our model camsbkd to successfully
match shapes in real images despite occlusion, clutterw@mdstimal performance of
the edge detect8rThe correct match in Fig. 3a involves significant deletiamirboth
point sets (the corkscrew’s blade in the first image and tineipm the second). Fig.
3b demonstrates a ‘query by example’ problem where a skédtfeaequired object
is found in a cluttered image.

4.3 Part-based variation

In Fig. 4 (first two rows) we consider shapes whose parts hadengone different
transformations. The basic model has no way of recognizanggtructure and at best
will identify localized dissimilarities (Fig. 4¢). Thisrtitation is important since part-
based variation is commonly observed between percepsiaiijar shapesq(f. Figs. 5
and 7). As we shall see in the next section, by introdugiagd the ‘discrete Gaussian
assumption’ fop(xx|qy), we have done all the hard work required for the construction
of a part-based model.

5Note that area-based scale normalization can always benrssticomplete boundaries are available.
6The output of edge detectors is often noisy, particulari@BiR where it is unrealistic to choose different
parameters for each image.
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Figure 3: Matching shapes in real images.

5 Part-based Model

The model introduced in Sec. 3 can be seen as a special insitdapart-based model:
it has one background parf,j and one foreground parg (). We now consider models
with one background parg;, and() foreground partSq}, ey q?, where

Y|k7Q§c ~ N (siT1xp, +cl,a2I). (11)

Thus, the part ‘labely’ indexes transformation parameters where a (foregrountl) pa
is implicitly defined as those points & that undergo the same transformations. Note
that parts ofX are only defined in the context of a giv&hthatX is being matched
to. This is in complete contrast to methods which seek anpedéent part decompo-
sition of each shapee(g.[10]). The simplest way to proceed is to writéy;, k, q) =
p(y;lk, ¢)p(k,q) and learn every entry of the(k, ¢) matrix. Our experiments have
indicated that this approach learns parts that are widelgedsed around the shape,
i.e.the decomposition that maximizes the expected likelihamescot agree with the
intuitive decomposition. Here, as before, we writé:, ¢) = p(k|q)p(¢) and use the
Gaussian assumption introduced in Sec. 3 (eq.(4)) whidrewdourage parts to have
spatial coherence:

9(xk; g, X1)
- .
D et 9(Xk: py, )

This assumption means that tkg themselves are generated by a GMM wilcom-
ponents. However, note that this GMM is embedded in the targelel. Using EM
to maximize the expected likelihood will balance this GMM#sire for coherent parts
against the need for the parts and transformations to extlaireal data (thg;).

There are now lots of parameters;, I';, ¢;, p;, %4, andp(qlf) to update. The up-
date equations themselves (egs. 5-9) remain the same ekegp(y;|k) in eq.(5)
become(y;|k, ¢). This highlights the fact that each, (k # k) now belongs to
everyq} to some extent — a soft assignment of mixture componentsts. jéhe initial
p(q) are chosen at random, except fdr;,) which is initialized to 0.001. We assume

p(kldy) = p(xkldh) (12)
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Figure 4: Part-based variation.

that the optimal number of part§, is known; techniques for learning are discussed
in Sec. 7.

To visualize the matches found using this model, we firsttdaieamatched points
using the procedure described in Sec. 3. This leaves a sobdety ;, each element
of which has been assigned to an undeletgd The part membership of aty, (and
thosey, assigned to it) is given byrg max, p(xx|q). Finally, eachx;, is transformed
using the transformation parameters of the part to whicklibigs. Fig. 4 (third row)
demonstrates that the new model can correctly match shapesevparts have under-
gone independent transformations. The learnt decompnsitibottom two rows of
Fig. 4) show that the matches were achieved by learning theailgart structure of
the objects. We now consider more challenging problemsrdbelts of which give

valuable insight into the model’s behavior.
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Figure 5: Part-based matching of some MPEG-7 shapes.

6 Part-Based Model — Examples

Fig. 5 shows the results achieved on pairs of shapes from PEGA7 data set. All
shapes are represented by the same number of points (12B)irgrus to use standard
Procrustes matching to find the initial alignments [12]. &e that the learnt parts
are either ‘natural parts’ (Fig. 5a), composites of natpeats (Figs. 5¢, 5d), or ‘minor
natural parts’ that arise through recursive decomposiafadhe shape (Fig. 5b). Thus,
despite the model not always learning the most obvious dposition, the learnt parts
do correspond to perceptually meaningful elements of tl@ah This suggests that
shape similarity measures based on our approach may mimamjudgement more
accurately than standard nonlinear methods. The chakemggociated with defining
such measures are discussed in Sec. 7.

Different aspects of the model’s behavior can be explaisauspecific examples.
The tendency to learn composites of natural parts is péatiguclear for the horse
shapes. Here, the legs and bodies of the horses can be welieddiy a single trans-
formation, so the similarity between these regions can tablshed without learning
the composite parts. Indeed, the very fact that these regambe well matched means
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that there is insufficient variation to learn the compos#tag With the hammers, there
is only significant variation on one side of the head and oguestly this minor part is
recognized. There are various examples of the algorithetidgl significant sections
of the shape to achieve a good match, most notably: the lsdesk’the deer’s antlers
and one end of the beetle’s body (Fig. 6). In Fig. 6, the modslgaired together legs
which are spatially separated. Here, the mechanism fongaging spatial coherence
is ineffective and the model has learnt part compositesdhatcounter-intuitive. If
seven parts are used, the intuitive decomposition (a bodysanlegs) is not learnt,
suggesting that there is insufficient variation of the reatg It is interesting to con-
sider how an algorithm including part number selection $thbehave in this case and
how such behavior could be achieved(Sec. 7).

Fig. 7 demonstrates that the model can be used to succgsshiith shapes in real
images despite part-articulation, occlusion and subamgdtperformance of the edge
detector.



7 Summary and Discussion

We have presented a probabilistic approach to shape mgtehirch is invariant to
rotation, translation and scaling. The algorithm operatesinlabeled point sets of
arbitrary size and uses a background model to handle ooalusignificant dissimilar-
ities between shapes and image clutter. By simultaneoeatying a part decomposi-
tion of both shapes, we are able to successfully match shbhpediffer as a result of
independent part transformations.

The examples in this paper indicate that our method oversdhgeproblems asso-
ciated with state-of-the-art techniques. However, furtherk is required to produce a
complete matching algorithm with an associated similasigre. Choosing the num-
ber of parts is the most important issue still to be addresstd are assessing the
performance of penalized log-likelihood approacr@sthis model selection problem.
Currently, there is no ‘cost’ associated with the part tfamsations. Thus, the degree
of part rotation, scaling and translation does not alterlitedihood of X generating
Y. It may be appropriate to put prior distributions over thensformation parameters
that encourage small transformations. These should réfleéact that we are not con-
cerned about transformations common to all parts, but ratieedifference between
transformations applied to different parts. Initializatis another importantissue. The
final match is sensitive to the initial values ofk|q) andp(q). Selecting these val-
ues based on a standagdcomponent GMM for thex;, works well when this naive
clustering approximates the part structure. The EM algoribften finds the correct
match despite a seemingly poor initial alignmeaf.(Figs. 1 and 4), but inevitably,
sub-optimal matches (local minima) are chosen on some mrsasBasic matching
algorithms €.f. Fig. 5) can provide good initial alignments. Since the EMoaittpm
converges quickly when a good match exists (generall® iterations), we need not
restrict ourselves to a single initial alignment for eachi pashapes.
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