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BVH_Node{
     // Store only the bounding volume data
};

memoryLocation 🡐 f(node implicit-ID);

nodeCount 🡐 f(triangles=5) // ~= 2*triangles - 1;

descendant 🡐 f(node implicit-ID, ...);

ancestor 🡐 f(node implicit-ID, ...);

Binary Ostensibly-Implicit TreeMesh Bounding Volumes Resulting BVH

Figure 1: We present a fast encoding of bounding volume hierarchies (BVH) for broad-phase collision detection with low-memory usage.
Our method can generate trees supporting canonical indexing of implicit trees without the need for padding memory. We achieve this by
observing that for a given number of objects, an almost-perfect binary tree can be completely determined, and the nodes missing for it to
be "perfect" can be characterized through simple bit-manipulations. The figure shows a sequence where a BVH is constructed over a mesh
using our novel representation. A minimal number of nodes are stored which can be indexed like the heap data structure.

Abstract
We present an simple, efficient and low-memory technique, targeting fast construction of bounding volume hierarchies (BVH)
for broad-phase collision detection. To achieve this, we devise a novel representation of BVH trees in memory. We develop a
mapping of the implicit index representation to compact memory locations, based on simple bit-shifts, to then construct and
evaluate bounding volume test trees (BVTT) during collision detection with real-time performance. We model the topology of
the BVH tree implicitly as binary encodings which allows us to determine the nodes missing from a complete binary tree using
the binary representation of the number of missing nodes. The simplicity of our technique allows for fast hierarchy construction
achieving over 6× speedup over the state-of-the-art. Making use of these characteristics, we show that not only it is feasible to
rebuild the BVH at every frame, but that using our technique, it is actually faster than refitting and more memory efficient.

CCS Concepts
• Computing methodologies → Collision detection;

1. Introduction

Computer graphics researchers have developed diverse methods for
accelerating GPU-based broad-phase collision detection by con-
structing bounding volume hierarchies (BVHs) and evaluating their
intersections by expanding bounding volume test trees (BVTT)
[GS87; Eri04]. Since BVH construction and BVTT expansion are
expensive operations, techniques such as BVH refitting and BVTT
front tracking are widely adopted to reduce the runtime cost.

Refitting is an operation to build the BVH once or at regular
intervals and then resize bounding volume extents or perform local

restructuring. Notably, refitting has inherent limitations because the
spatial agglomerative structure of the objects which are enclosed
within the BVHs is likely to change (potentially drastically) as
commonly seen with deformable objects such as cloth and volumet-
ric simulations. Failure to sufficiently capture this spatial structure
can degrade performance and worsen runtime storage costs due to
an increase in the number of overlapping bounding volumes.

BVTT front tracking, which is an approach to cache the BVTT
[KHM*98] between frames, can be detrimental for GPU process-
ing because it has a high memory cost and will complicate traversal
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Figure 2: Illustrative comparison with the binary radix tree (left) [Ape14]. Each leaf node is associated with a 4-bit Morton code which is in
lexicographical order, and initially generated from the position of an object (e.g. triangle). Our technique (right) offers an implicit structure
which is derived from the total number of objects, supporting fast indexing, and without memory padding. The explicit structure of the radix
tree is encoded in the linear range of keys covered by an internal node which affects storage costs and limits construction performance.

logic. Also, front tracking assumes that the BVH structures will re-
main unchanged across simulation frames - otherwise the cached
fronts are invalidated by structural changes to the BVH. This as-
sumption does not hold well for scenes involving deformable ob-
jects.

One possible way to circumvent these issues is to construct the
BVHs and BVTT from scratch at every frame, without refitting or
front tracking. However, the bottleneck then becomes the repre-
sentations that are commonly used for BVH data structures. Most
BVH-based methods on GPUs [Ape14; Kar12; WTMT18] explic-
itly compute and store the connectivity between nodes, which in-
troduces indirection (see Fig. 2), and will affect the construction
time due to added overheads. Aside from the fact that nodes must
store this connectivity, traversing these BVH trees from one node
to a descendant several levels deep requires using loop constructs
and memory lookups which can significantly drop GPU perfor-
mance. Alternatively, existing implicit structures, which do not re-
quire storing the connectivity, may either waste a lot of memory
due to padding [CDK18], or they may not suit GPU architectures
for the construction [CSE06].

We present a fast, memory-friendly, parallel broad-phase colli-
sion detection approach to construct and traverse large-scale hier-
archies - which is characterised by using an implicit binary tree for
final topology, and a novel way to encode this (logical) tree layout.
Our method is supported by the notion of an ostensibly-implicit tree
data structure as illustrated in Fig. 1 (middle) and Fig. 2 (right),
which is a novel implicit binary tree structure specially designed
to achieve fast construction and traversal on GPU architectures. In
this structure, the BVHs are represented by series of implicit binary
trees. The relationship between nodes can be computed by closed-
form descriptions which can be implemented efficiently in hard-
ware using fast bit-shifting operations. We also provide formulae
to associate node indices with respective memory locations, which
results in compact memory storage and fast access for construc-
tion and traversal. It supports fast bottom-up construction based on
Morton codes, which is more suitable for modern parallel architec-
tures compared to heap-based top-down constructions. Our method

achieves a construction rate of over 4.7 billion nodes per second
and is over 6× faster than the state-of-the-art solution [Ape14].

Our evaluation with the UNC dynamics benchmarking suite
[CGK*09] shows that our collision detection pipeline is 1.3× faster
than the state-of-the-art [WTMT18] while using 5× less memory
and re-building BVHs every frame. This is achieved by sidelining
the use of monolithic BVHs for the entire scene in favor of BVH-
BVH tests where traversal workloads scale according to the prox-
imity between meshes. These savings are also due to our simplified
setup in which explicit BVTT front tracking is avoided to mitigate
inhibitive memory costs.

1.1. Contributions

The contributions of this paper are summarised as follows:

• Compact Implicit Tree – We represent the BVH as a novel layout
called the ostensibly-implicit tree, decoupling storage costs from
the implicit structure and enabling fast construction (Section 3).
• Construction – We offer a fast O(n) algorithm which maps well

to GPU architectures and without complex tracking of radix key-
ranges (Section 4).
• Lightweight Collision Detection Pipeline – We present a sim-

ple and fast broad-phase collision detection pipeline where we
construct the BVH and BVTT from scratch at every frame (Sec-
tion 5).

The rest of the paper proceeds as follows: After reviewing re-
lated work in Section 2, we introduce our ostensibly-implicit tree
structure and how we map it to the memory in Section 3. Next,
we explain how we construct a BVH based on ostensibly-implicit
trees in Section 4, and then how we use them for collision detecion
in Section 5. We present our experimental results in Section 6 and
conclude the paper in Section 7.

2. Related Work

In this section, we first review methods for constructing BVHs in
parallel. Next, we review methods based on implicit tree structures
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to optimise search problems in related areas, and simpler tree up-
dates. Finally, we review GPU-based approaches for handling col-
lision detection.

BVH Construction: Fast BVH construction is a common problem
for collision detection and ray tracing [LAM06; Wal07; Ken08].
Our work shares much in common with recent efforts which fo-
cus on a multitude of acceleration strategies and trade-offs between
construction time versus BVH quality. Lauterbach et al. [LGS*09]
introduce the Linear BVH (LBVH) sorting objects along the Z-
curve to facilitate partitioning and significantly improve construc-
tion time. Since its introduction LBVH has been extended numer-
ous times and has inspired the construction algorithm presented in
our work (see also [PL10; GPM11; Kar12]).

In general, fast construction is achieved with a loss in BVH
quality. The BVH quality of these solutions will fall short of the
gold standard making them useful especially when the number of
queries is relatively small as in collision detection. Karras [Kar12]
has presented a technique for depth-first ordered binary radix trees
and building the entire tree in O(n) time. The algorithm maps well
to GPUs by addressing the shortcomings of prior methods (see e.g.
[GPM11]) which generated the hierarchy sequentially for individ-
ual tree levels. Conversely, Karras [Kar12] required separate ker-
nels to generate the hierarchy and fit bounding volumes. A bottom-
up strategy is proposed by Apetrei [Ape14] which is known to be
the fastest, requiring one GPU kernel to build the hierarchy and cal-
culate bounding volume extents. The method is relatively efficient
but complex, requiring an analysis of the split positions of internal
nodes for establishing a connection between their indices and the
ranges of Morton codes that they cover etc. Our reliance on a topo-
logically implicit structure means that we surpass requirements to
establish explicit node-connectivity which is in contrast to the ap-
proach of Karras [Kar12] and Apetrei [Ape14].

Implicit representations: Several implicit BVH representations
have been proposed in literature which are related to the data struc-
ture layout that we describe. Eisemann et al. [EBGM12] present
an implicit representation for partitioning object space to reduce
storage costs similar to the bounding interval tree (BIH) [WK06].
Their BVH is implicit in the sense that node bounding volumes are
inferred at runtime from a set of bounding triangles and only storing
a few indices. The minimal bounding volume hierarchy (MBVH)
[BEM10] is another implicit structure in the form of a full and com-
plete binary tree for BVH compression. However, while storage per
node is reduced, the total number of elements is a constant maxi-
mum 2N− 1 nodes. Conversely, we store the minimal number of
BVH nodes for a given set of objects to reduce memory costs while
retaining the benefits of implicitly-indexed trees.

Cline et al. [CSE06] present the well-related lightweight implicit
BVH which is indexed like a heap. Their non-parallel solution for
generating an implicit tree is done in a top-down manner by recur-
sively splitting the leaf nodes into half - such an operation is not
well suited to GPU architectures [LGS*09]. The generated tree is
also less flexible since leaf nodes may not reside on the same level.
In particular, the number of objects enclosed by each node must be
known before the lightweight-BVH can be initialized requiring at-

least two ‘passes’ for construction - object partitioning requires that
the number of objects in each internal node is known by summing
the number of nodes in its children. Their approach will also cal-
culate the total number of BVH nodes using the amortized cost of
leaf nodes resulting in additional bookkeeping which will degrade
the construction performance. Conversely, we only need to know
the number of objects to infer the implicit tree structure. Further,
our approach offers an exact closed-form solution to calculate the
number of nodes given the number of objects - which can be done
using trivial bit-manipulations as described in Section 3.

Simpler Tree Updates: In collision detection problems, simpler
BVH update strategies such as refitting and selective restructur-
ing are common [LAM06; LMM10; KIS*12]. This choice is mo-
tivated by speed, and in-part by the fact that these strategies are
well suited for generalised front-tracking [KHM*98] which would
otherwise require significant bookkeeping when BVHs are rebuilt
from scratch (see e.g. Wang et al. [WTMT18]). However, a degra-
dation of BVH quality is also inevitable when accumulated defor-
mations within dynamic scenes cause significant increases in the
overlap among child bounding volumes. Worse yet, in the case of
breakable objects, refitting and selective restructuring are insuffi-
cient and a full reconstruction is needed.

Intermediate solutions such as Kopta et al. [KIS*12] use hy-
brid methods which heuristically track sub-trees to rebuild (see
also [Ken08; Gar08]). Kopta et al. [KIS*12] propose a well-related
incremental update scheme by combining refitting with local re-
structuring to modify sub-trees via rotations, and node splitting.
However, they still advocate for a full rebuild when extreme de-
generations occur, which has seen recent application within GPU-
based collision detection [WTMT18].

Parallel Collision Detection on GPUs: Since Lauterbach et
al. [LMM10]’s early work on BVH-based broad-phase collision
detection on GPUs, research has taken a number of approaches to
accelerate this notoriously difficult task. Within parallel graphics,
these methods range from those accelerating collision tests with
the BVH, to spatial hashing schemes formulated to obviate the
bounding volume test tree (BVTT) in favour of a lower memory
footprint and a guaranteed worst-case number of intersecting poly-
gon pairs (see works by [TLTM18; TWL*18; WLZ14; WDZ17]).
However, these latter approaches can be limited in several ways:
the grid size is an important factor in the overall performance,
pipelines may need to be coupled with normal-cone culling to sus-
tain performance (e.g. [TLTM18]), and there are restricted oppor-
tunities to exploit frame-to-frame coherence for which our (BVH)
approach can be readily extended. Though spatial hashing methods
are widely explored, BVH based methods still comprise much of
collision detection approaches. Spatial coherence based methods
were among the first and performed broad-phase collision detec-
tion as a caching scheme with collision-fronts [LMM10; PM10].
However, these methods are also limited: GPU parallelism can only
be exploited with a sufficiently large collision-front, and traver-
sal logic relies on thread-level private work-stacks which constrain
performance due to divergence between threads (see e.g. [LMM09;
TMLT11]). Most notably, the reliance on a collision-front for per-
formance is memory intensive and assumes that the underlying
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Figure 3: Our tree representation is defined by so-called real and
virtual nodes. The real nodes are the actual data (i.e. bounding
volumes), and virtual nodes are simply non-existent placeholders.
The layout is a left-leaning implicit structure, where the real nodes
occupy the left-most slots on each level and are implicitly assigned
a memory index.

BVH structure will remain fixed between frames, otherwise fronts
are invalidated.

A number of methods offer in-part successful solutions to solv-
ing the memory problem of caching collision fronts. Tang et
al. [TMLT11; TWT*16] have addressed the memory problem by
deferring collision fronts to fit BVH node pairs in memory and
propagating the BVTT in localised sets of nodes, respectively.
However, these approaches curb the memory problem heuristically,
they are complex, and their success-rate is not thoroughly investi-
gated. A simpler approach is discussed in [WTMT18] which ac-
counts for the order between BVH node pairs to cull up-to 25% of
redundant self-collision tests, and is well suited for the implicit tree
setting. Wang et al. [WTMT18] present one of the fastest BVH-
based methods by ordering and restructuring the collision front
and BVH, while using stackless depth-first search (DFS) traver-
sal. Their method proposes to use a histogram sort and auxiliary
data structures to reduce random data access patterns arising from
front updates, while providing a quality metric to mitigate BVH
degradation. Unfortunately, the benefits of restructuring are off-
set by its cost in scenes with large deformation and their selec-
tive restructuring of BVHs yields a complex pipeline since changes
must be reflected within the collision fronts. To simplify traversal,
Chitalu et al. [CDK18] present a non-cached front approach us-
ing implicit trees to traverse BVHs from pre-specified levels to the
leaves, thereby circumventing the drawbacks of explicit collision-
front tracking. Notably, their method is promising but requires im-
plicit structures that are prohibitively expensive due to padding
which we overcome.

3. The Binary Ostensibly-Implicit Tree

In this section, we introduce and describe our novel ostensibly-
implicit tree layout for reducing the memory costs of implicit struc-
tures without need for post-processing to compact data (Fig. 3, Sec-
tion 3.1). We also describe a mapping between the perfect implicit
tree layout and ours, linking implicit index labels to actual data in

memory (Section 3.2). For convenience, we assume a binary tree
layout (e.g. Fig. 4), but the concept is extendable to arbitrary arity
(see Appendix C).

3.1. Tree Layout

With a perfect binary tree layout that is full, one can completely
remove all pointers and store the pointerless nodes in an array. This
layout is determined by a parameter t, which could be the number
of objects such as triangles. However, when t is a non-power-of-
two, space still has to be allocated by introducing virtual nodes
which accommodate for unused elements.

The heap data structure (e.g. [CSE06]) can eliminate virtual
nodes but requires post-processing which will affect construction
performance, and nodes may have to store additional reference
data.

We resolve this problem using an implicit layout which is free
from post-processing (Fig. 3) to eliminate all virtual nodes and
explicit pointers. The idea is to produce a perfect implicit binary
tree layout where the virtual nodes are brought to the right-hand-
side (see Fig. 3, blue nodes), and are then encoded as a series of
smaller perfect trees. With this representation, we provide an ana-
lytical form to map the remaining real nodes sequentially into the
memory, and thus can minimize the memory usage to the size of
the real nodes since virtual nodes are not materialised in memory.

Power-Sum Decomposition: We now describe how to decompose
the number of objects t into a tree of the real nodes and a series
of implicit binary trees of the virtual nodes. This decomposition is
used to map implicit indices to compacted memory locations.

To intuitively illustrate the representation of our layout, observe
that the residual number of leaves in an implicit binary tree which
are virtual nodes is

Lv = 2dlog2 te− t, (1)

giving a total count of Lc = t + Lv = 2dlog2 te leaves, such that
log2(Lc)−dlog2(Lc)e = 0. Thus, the total number of nodes in the
perfect binary tree will be

Nc = 2Lc−1. (2)

With Nc, we then seek to find the total number of real nodes

Nr = Nc−Nv, (3)

where Nv is the total number of virtual-nodes (refer to Fig. 3).

We compute Nv following the observation that Lv may be ex-
pressed as a sum of powers-of-two. This observation gives a de-
composition of Lv which yields a set X (Lv) = {x | x = 2y}, where
y ∈ N and y≤ blog2(Lv)c. Specifically, we define this set by

X (Lv) =
{

2y1 ,2y2 , . . . ,2yN
}
, yi ∈ Y(Lv), (4)
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where Y(Lv) = {y1,y2, . . . ,yN}, such that

y1 = blog2(Lv)c,

y2 =
⌊

log2

(
Lv−2y1

)⌋
,

. . .

yN =

⌊
log2

(
Lv−

N−1

∑
i=1

2yi

)⌋
.

The set X (Lv) is optimal in the sense that it is defined using the
largest powers-of-two summing to Lv. Thus, the general analytical
form for Nv given X (Lv) is then evaluated by

Nv =
N

∑
k=1

2xk−1, xk ∈ X (Lv), (5)

= 2

(
N

∑
k=1

xk

)
−N

which will evaluate Nv as a finite sum of perfect implicit-tree sizes
containing only virtual nodes as shown in Fig. 3. N = |X (Lv)| is
the cardinality of the set X (Lv), representing the total number of
powers of two which sum to Lv.

Binary Encoding: Our approach so far offers a general solu-
tion requiring several steps in order to evaluate the total num-
ber of real nodes Nr by first determining the number of virtual
nodes Nv. We now describe a practical implementation utilizing
bit-wise operations to refactor these formulas as simple and fast
one-line calculations. In particular, we extensively rely on a func-
tion count_set_bits to count the number of non-zero bits in a
given integer’s binary representation.

Thus, in practice we evaluate Eq. (5) by

Nv = 2Lv−count_set_bits(Lv), (6)

following a key observation that the i-th non-zero bit, 0 ≤ i, in the
binary representation of Lv uniquely identifies a corresponding sub-
tree of virtual nodes with 2i leaves. This sub-tree will have 2×2i−
1 nodes. Consequently, by summing over all set bits we arrive at
the solution. Also, from Eq. (2), (3) and (6), the exact total number
of real node nodes in the tree is

Nr = 2t−1+count_set_bits(Lv). (7)

We use these solutions to map the implicit index of each node to a
unique memory location as described next (Section 3.2).

3.2. Mapping Implicit Indices to Memory Locations

We now describe a method to compute a mapping between the im-
plicit index of a real node and the location in memory where it is
stored - providing a complete solution for generalised pointer-less
traversal with zero indirection. We use the term “implicit index” to
refer to the numerical label given to each node in the perfect tree in
breadth first search (BFS) order as shown in Fig. 4.

For a given real node, its location in memory is determined by
its implicit index, depth level, and the number of virtual leaves in
its tree as described in Section 3.1. To define our memory map-
ping, let i be the implicit index of a real node which is at level

0
1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 4: A perfect binary tree which is full and complete with
implicit-indices (labels) following a pre-order traversal pattern i.e.
breadth-first search labelling. Our algorithm assumes this layout
where leaf nodes occupy the deepest level.

li = blog2 (i+1)c, (0≤ li ≤ l̄), where l̄ = dlog2 te is the leaf level.
Further, let

Lvl =

⌊
Lv

2l̄−l

⌋
≡ Lv » (l̄− l) (8)

be the number of virtual nodes at level l due to the consecutive and
approximate halving of the number of virtual nodes at each level
when moving up tree from l̄ by l̄− l levels, where » is the bitwise
right-shift operator. Thus, the memory location of i is computed by

im = i−Nvl , (9)

where

Nvl = 2Lvl−count_set_bits(Lvl), (10)

which is similar to Eq. (6), but with Lvl computed as in Eq. (8)
using l = li−1.

Intuitively, our goal in Eq. (9) is to account for the number of
virtual nodes above li from which a memory location can be deter-
mined given i (thanks to BFS labelling). Eq. (9) provides a seamless
solution for bridging between the perfect implicit tree (Fig. 4) and
our layout Fig. 3. The solution is simple and fast (due to bitwise
encoding) offering an indirection-free description of data layout in
memory.

With these properties, our layout is particularly attractive since
it is compact by eliminating the nuances of explicit and/or padded
tree structures. The node data (i.e. the ‘payload’) is smaller com-
pared to the case of including child (and parent) pointers, or when
the tree really is fully padded (or perhaps just a few nodes off on
the short side from being full). Also, a level l, 0 ≤ l is only com-
pletely filled with real nodes iff 2l <

⌊
2(t−1)/2blog2 tc

⌋
. This is

in contrast to data structures such as the heap in which all levels,
except possibly the last, are filled.

4. BVH construction

We now describe a method to construct a BVH using the ostensibly-
implicit tree layout. The basic idea of our approach is to utilize
Morton order [Mor66] and a specific node layout (which is implicit
in our case) to establish a mapping between GPU threads and BVH
nodes. Here, we lay emphasis on a GPU implementation since our
target application is parallel collision detection, but the method is

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chitalu et al. / Binary Ostensibly-Implicit Trees

easily extendable to other implementations (e.g. single or multi-
threaded CPU). In this approach, we simplify and extend Apetrei’s
method [Ape14], but mapping entire GPU thread-groups to sub-
trees and without explicit tracking of radix-key ranges. Section 4.1
first provides a high-level perspective on how the layout is derived
from the number of objects. We then describe the algorithm and
two implementations in Section 4.2.

4.1. Hierarchy construction

x = 0.1011
y = 0.0010
z = 0.1100

x = 0.1--0--1--1--
y = 0.-0--0--1--0-
z = 0.--1--1--0--0

Code = 0.101001110100

Step 1:
Morton Code
Generation

Step 2:
Morton Code

Sorting

Step 3:
BVH

Construction
Mesh primitives

Figure 5: BVH construction pipeline.

The summary of the construction process of the hierarchy is
shown in Fig. 5. The objects (triangles in our case) are assigned
to the leaf nodes, their bounding volumes are computed then and
Morton codes are computed based on their center’s 3D positions
such that spatially adjacent nodes are given closer codes on the Z-
curve. Leaf nodes are then sorted using the corresponding Morton
codes as in [LGS*09]. Next, we walk up the tree one level at a time
processing internal nodes until reaching the root. We have used the
parallelisation strategy by Karras [Kar12] but extended to further
maximise parallelism and guarantee optimal usage of local shared
memory while ensuring O(n) complexity (thanks to the implicit
layout). We now describe this process.

4.2. GPU Kernel Implementation

Given the sequence of objects sorted according to their Morton
code, we construct the BVH while saving only bounding volumes
to memory.

Algorithm Steps: Algorithm 1 provides a general outline to con-
struct an ostensibly-implicit BVH (multi-kernel version illustrated
in Fig. 6). We assume that internal-nodes and leaf-nodes are stored
separately since leaf bounding boxes are already computed during
Morton code evaluation. Threads start from a unique node on the
construction entry-level, which is the first level processed when the
kernel starts - executing as many threads as there are real nodes on
this entry-level. Each thread then walks up the tree computing the
parent node, and memory location as described in Eq. (9) (see also:
lines 21 and 22). Additional indexing parameters, such as relative
positions, sub-tree level etc., are inferred directly using implicit in-
dices and thread IDs.

A group of threads is mapped to a sub-tree which is processed in-
dependently from the rest (line 1). A subtree is assigned to a group
based on the given size and ID of the group thanks to the implicit
layout (see Fig. 6). A group is defined by mapping threads to nodes

Group 0

Group 0 Group 1

Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

Thread 0 Thread 1

Kernel 1

Kernel 0

Group 2 Group 3

Figure 6: Parallel tree construction where groups of threads are
mapped to independent sub-trees.

ALGORITHM 1: High-level ostensibly-implicit BVH construction
Input : tIntArr - internal-node bounding-box array
Input : tEntryLev - level from which to begin aggregation
Input : meshFaceCount - number of faces in input mesh
Input : tLeafArr - mesh-order real-leaf bounding-box array
Output: tIntArr

[1]parallelfor foreach group do
[2] tLevPos = global_id // ∈ [0, t)
[3] tNode = (2tEntryLev−1) + tLevPos
[4] if tEntryLev == tLeafLev - 1 then
[5] lBB = get_leftchild_bbox(tLeafArr, tNode, . . . )
[6] if rightChildIsReal then
[7] rBB = get_rightchild_bbox(tLeafArr, tNode, . . . )
[8] end
[9] else
[10] lBB = get_leftchild_bbox(tIntArr, tNode, . . . )
[11] if rightChildIsReal then
[12] rBB = get_rightchild_bbox(tIntArr, tNode, . . . )
[13] end
[14] end
[15] tNodeBB = merge(lBB, rBB)
[16] write_bounding_box(tIntArr, tNodeBB, . . . )
[17] // sub-tree root level
[18] tLevMin = tEntryLev− log2(group_size)
[19] tLev = tEntryLev
[20] while tLev ≥ tLevMin do
[21] tLevPos = global_id/2tEntryLev-tLev

[22] tNode = (2tLev−1) + tLevPos
[23] if rightChildReal AND firstThreadToReach(tNode) then
[24] terminate()
[25] end
[26] lBB = get_left_child_bv(tArr, tNode, . . . )
[27] if rightChildReal then
[28] rBB = get_right_child_bv(tIntArr, tNode, . . . )
[29] end
[30] tNodeBB = merge(lBB, rBB)
[31] write_bounding_box(tIntArr, tNodeBB, . . . )
[32] tLev = tLev - 1
[33] end
[34]endparallelfor
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of a subtree on the entry-level (lines 4 to 14) before proceeding
to iteratively compute bounding volumes at higher levels (lines 20
to 33). When the entry-level is the second-last level of the tree, a
thread will process its node by reading the array of leaf bounding
volumes using the sorted triangle-IDs at relative positions deter-
mined by the thread global-ID. Otherwise, the thread will access
the bounding volumes of the left and right child (which are internal
nodes) in order to process current node. For operations that are lo-
calised to a group of threads, we also utilise local shared memory to
effectively cache the computed bounding volumes - permitting fast
access when processing the next level, which is guaranteed until
the subtree root node is processed.

Each internal node is processed by exactly one thread by using
atomic operations (line 23) to synchronise bounding volume up-
dates. Threads are terminated if they are first to reach a node which
is not on the entry level and has a right child - otherwise they re-
main active. The active thread will proceed to evaluate this node
and continue until termination or reaching the root of the subtree.

Implementation: We propose two implementations for our con-
struction algorithm distinguished by how they synchronise threads
using GPU global memory. The first is the multi-kernel imple-
mentation following a bulk-synchronous parallel (BSP) approach
[MGG12] to synchronise threads using only local atomic opera-
tions when processing nodes. Global barriers (e.g. multiple kernel
launches) synchronize thread-groups by unifying communication
and storage after the sub-tree root is processed as shown in Fig. 6.
This approach favours building large trees (e.g. more than 217 tri-
angles as shown in Fig. 8). The second implementation is single-
kernel construction (similar to Karras [Kar12]) which also uses
one group-thread to update the sub-tree root node. However, nodes
above the sub-tree are processed using global atomic operations to
synchronise threads from different groups to build the entire tree in
one kernel. Single-kernel construction is to be most useful with rel-
atively smaller meshes where the overhead of global atomics is neg-
ligible due to having less demanding parallel workloads in terms of
global memory accesses.

GPU Scheduling: By knowing the maximum size of a group
guser, (2 ≤ guser ≤ 2dlog2 te), the height of the subtree in each
kernel log2(guser) can be determined, and thus we can compute
the total number of kernels to schedule, as well as the configured
groups of threads for each kernel, including the total number of
GPU threads, thread-group size, and the number of real nodes at
the construction entry-level. These parameters can be computed as
soon as the number of objects t is known (e.g. during the initializa-
tion time on the CPU). The readers are referred to Appendix B for
the details of the implementation.

4.3. Summary

As seen in this section, the GPU thread will require only the im-
plicit index of the node to determine a path to the root thanks to the
implicit layout. Further, our approach guarantees all synchronisa-
tion between threads in a group to be done using only local atom-
ics which will reduce overhead. In particular, all the memory lo-
cations are directly determined from the implicit representation. In

contrast, state-of-the-art methods [LGS*09; PL10; GPM11; Kar12;
Ape14] require tracking radix-key ranges as a part of the bottom-
up reduction and using them to deduce the index of parent nodes.
This requires additional memory accesses which inevitably leads to
lower performance as our experimental results will show.

5. BVH Traversal for Collision Detection

As a target application, we describe how our data structure can as-
sist parallel collision detection. In contrast to refitting approaches,
where one must forego full BVH maintenance to enable collision-
front tracking, our approach allows one to maintain up-to-date
BVHs of a given scene, knowing that the underlying polygons will
be sufficiently captured and at minimal cost. Broad-phase collision
detection is particularly important since it serves to cull the search
space of costly polygon intersection tests.

Chitalu et al. [CDK18] describe a simple but fast method for
simultaneously traversing multiple BVHs on GPUs. In their ap-
proach BVH data is accessed like the heap but extended to allow
arbitrary jumps to descendants for maximising GPU workloads.
Thus, we adopt their algorithm and extend it using the ostensibly-
implicit tree layout with further improvement to BVH traversal.
Traversal is accelerated with the BSP model [MGG12], decom-
posing the task into a series of iterative level-synchronous kernels
(see Fig. 7).

Bounding Volume Test Tree Collision Front

Figure 7: Simultaneous BVH tree traversal. Pairwise collision de-
tection is performed with multiple BVH-BVH tests at the same time
producing one collision-tree.

Quick Access to Ancestors and Descendants Quick access to an-
cestors and descendants are essential operations for BVH traversal.
The implicit tree structure provides analytical solutions for access-
ing the ancestors, descendants and siblings in O(1) time. See Ap-
pendix A for the details.

Expanding the BVTT We perform explicit BVH-BVH tests and
corresponding BVH levels (and henceforth, the BVTT) are ex-
plored before the next. In our representation, a BVTT node is a pair
of integers which encode a BVH ID and an implicit index to form
a node descriptor, so that the node data can be quickly accessed
and tested for further intersections. Each kernel will map threads to
unexplored parts of the resulting BVTT in an input queue.

The BVTT is managed within GPU global memory and used as
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the input for next kernel, which simplifies the operation as threads
can be mapped to a small fixed number of work elements which
are evaluated to produce new BVH node pairs that will be pro-
cessed by the next kernel. Compared to front tracking [LMM10;
TMLT11; WTMT18], less data is marshalled in and out of global
memory (Fig. 10) because the average BVTT sprouting size for
each tested pair of BVH nodes is less than a factor of 22n, where n
is the depth-step (jumping) parameter (Appendix A). The resulting
BVTT computation can be done very efficiently even when start-
ing from the root, and performs better than BVTT front tracking as
shown in our experimenal results (Section 6).

6. Experiments and Results

In this section we present the results of our methods which are
implemented using OpenCL with platform version “OpenCL 1.2
CUDA 9.1.84”. Experiments are performed on a system with an
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and an NVIDIA
GeForce GTX 1080 @ 1733MHz equipped with 8GB of GDDR5X
VRAM. We first evaluate the performance of our approach for fast
BVH construction in Section 6.1. We then evaluate our method in
collision detection scenarios and compare against the state-of-the-
art in Section 6.2.

6.1. BVH Construction Performance and Comparison

We evaluate the performance of our construction algorithm where
triangles are assumed to be already sorted.

Table 1 provides a breakdown of BVH construction time and
compares against a well-known fast-construction method by Ape-
trei [Ape14] which is implemented in CUDA. Our construction al-
gorithms are faster than Apetrei [Ape14]. At best, we achieve over
6.5× speedup over this state-of-the-art method, and averaging 5×
across the evaluated datasets. At worst, we achieve 4.17× speedup
on the Happy Buddha mesh dataset, which is significant given that
this is our lowest score. Thus, our proposed method maps well to
GPUs, offering a simpler and faster alternative for categorically fast
BVH construction.

A comparison is also made against the naïve perfect implicit
binary-tree BVH which has padded nodes. Although the perfor-
mance is similar, our new layout saves up-to 48.1% of memory
on the evaluated datasets which is significant because real-world
meshes can require large BVHs where the size is just a few nodes
off on the short side from being full. We conceivably occur some
overhead during node index translation but it is a reasonable as-
sumption that the impact is negligible: Calculation requires only a
few arithmetic instructions (plus e.g. popcount), and without addi-
tional reads from a table. Thus, our approach is efficient by storing
an optimal number of nodes and with minimal overhead.

Performance Scaling: The overall scaling of our BVH construc-
tion performance in terms of BVH nodes constructed per second is
shown in Fig. 8. We analysed scalability by evaluating construction
time using a gradually refined mesh, from 210 to 222 triangles. Our
construction algorithms yield high throughputs, reaching a rate of
at-least 4.7 billion BVH nodes per second. This experiment also
reveals that ostensibly-implicit tree construction scales optimally

and retains faster execution time than Apetrei [Ape14] with 3.2–
6.2× speedup (averaging 4.5×). Our speedup is highest with large
meshes, where the number of threads is sufficient to saturate the
hardware.
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Figure 8: BVH construction performance.

In relative terms, our construction algorithms yield competitive
performance where the multi-kernel version is approximately 7%
faster than the single-kernel implementation. Fig. 8 reveals that a
crossing-point in throughput between the two algorithms is reached
when using a mesh with approximately 217 triangles. Our single-
kernel algorithm is 1.15× faster below this threshold, but saturates
the hardware with lower throughput due to the reliance on global
atomics which increase with the number of triangles. The multi-
kernel version is 1.22× faster above the threshold since local atom-
ics amortize the cost of global barrier synchronisation.

6.2. Collision Detection Performance Comparison

In this section, we compare our method to two other techniques for
handling collision detection - including broad-phase and narrow-
phase. We show that our approach is faster across a number of
benchmarks. Comparisons on worst-case runtime memory usage
are also discussed. In all results shown, our BVHs are re-built from
scratch at every frame.

Comparison against Wang et al. [WTMT18]: Table 2 summa-
rizes our collision detection performance using datasets from the
UNC dynamics benchmarking suite [CGK*09], and compares with
Wang et al. [WTMT18] (see also Fig. 9).

Speed: We compare against their speed using BVH refitting and
front tracking. Our method is up to 30% faster which is significant
since we reconstruct our BVHs from scratch at every frame (Note:
our speedup is 4× when they re-build BVHs every frame). At best
the state-of-the-art BVH based techniques build the BVH once and
simply refit at every frame, which degrades the overall efficiency
over time. With our approach however, not only it is feasible to
rebuild the BVH at every frame, but our technique is actually faster
than refitting.
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Bunny
144k tris

Erato
412k tris

Dragon
873k tris

Happy Buddha
1087k tris

Hairball
2880k tris

Builder Nodes Padding (%) Time (ms) Nodes Padding (%) Time (ms) Nodes Padding (%) Time (ms) Nodes Padding (%) Time (ms) Nodes Padding (%) Time (ms)

Perfect Implicit BVH 524287 45.05 0.14 1048575 21.2 0.24 2097151 16.9 0.42 4194303 48.1 0.9 8388607 31.3 1.6
Apetrei [Ape14] 288091 0 0.40 825337 0 1.10 1742611 0 2.29 2174947 0 2.92 5759999 0 8.50
Oi-BVH (Single-kernel) 288100 3.1e-3 0.074 825344 8.4e-4 0.25 1742621 5.7e-4 0.55 2174957 4.5e-4 0.83 5760004 8.6e-5 1.37
Oi-BVH (Multi-kernel) 288100 3.1e-3 0.077 825344 8.4e-4 0.23 1742621 5.7e-4 0.5 2174957 4.5e-4 0.7 5760004 8.6e-5 1.3

Speedup: Oi-BVH vs. Apetrei - - 5.4× - - 4.78× - - 4.58× - - 4.17× - - 6.53×

Table 1: Results for BVH construction (time is in milliseconds), with a comparison between our two proposed implementations (single-kernel
and multi-kernel) and the radix-tree BVH by Apetrei [Ape14]. Speedup is calculated using our fastest algorithm over Apetrei [Ape14]’s total
time to compute the hierarchy topology and fit bounding boxes. Models are sourced from the McGuire Computer Graphics Archive [McG17].
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Figure 9: Collision detection time using datasets from the UNC dynamics benchmarking suite [CGK*09]. Full BVH construction occurs
every frame for the datasets with self-collisions (Funnel, Cloth-Ball and Flamenco) by including Morton-code evaluation (MC Eval) and
sorting (MC Sort). We perform only refitting (Build) with N-body for all 305 objects because it is rigid-body dataset. We have used the
same implementation as gProximity [LMM10] for narrow-phase collision detection which is also adopted by Wang et al. [WTMT18]. The
Broad-phase component highlights our simultaneous BVH traversal execution time to find the set of potentially colliding pairs which are
forwarded onto the narrow-phase.

Wang et al. [WTMT18] Ours Comparison

Benchmark Triangles Objects Frames Time (stdev)
Runtime

Memory (mb)
Time (stdev)

Runtime
Memory (mb)

Performance
Speedup

Memory
Usage (%)

Cloth-Ball 92k 2 94 2.3 (1.33) 145.46 1.9 (0.34) 85 1.2× 58.4
Funnel 19k 4 500 0.6 (0.16) 58.6 0.6 (0.06) 8.53 1× 14.5
N-Body 142k 305 75 4.3 (0.24) 296.85 3.62 (0.07) 15.1 1.18× 5
Flamenco 49k 10 705 2.59 (0.52) 130.37 2 (0.1) 24.2 1.29× 18.57

Table 2: Execution time comparison (milliseconds) of our collision detection (broad + narrow phase) with Wang et al. [WTMT18].
.
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Memory: When performing broad-phase collision detection, front-
tracking will explicitly cache BVH node pairs where traversal stops
- managing such a scheme consumes a lot of memory, especially
when interaction between the objects are intense. Fig. 10 shows a
comparison of average BVTT size against Wang et al. [WTMT18]
for the same benchmarks used in Table 2. Our approach can reduce
the BVTT size by up-to 97.7% (see: N-Body benchmark), making
our approach simpler, faster and more memory efficient.

Pipeline analysis: In general, BVH construction and traversal,
which are the focus of this paper, occupy most of the execution
pipeline. Fig. 9 shows a breakdown of total collision detection time
for the results presented in Table 2. We execute the full BVH con-
struction pipeline on datasets with self-collisions (MC Eval, MC
Sort and Build) which takes 28-40% of the total time. With the
N-body dataset, BVH construction accounts for over 95% of the
total execution time surmounting to 3.4ms. While the individual
rigid-bodies are small (approximately 1024 triangles per mesh), the
quantity leads to an overall degradation in performance because
BVHs are constructed sequentially. Nonetheless, the total execu-
tion time for N-Body is below 4ms which is faster than Wang et
al. [WTMT18]. BVH Traversal (broad-phase) accounts for approx-
imately 48-52% of the execution time on the self-collision datasets
leading to large workloads arising from the tested BVH node-pairs.
For N-Body, traversal accounts for approximately 5% of the to-
tal time because it is a rigid body simulation (no self-collisions)
and mesh sizes are small. In general, traversal is largely affected
by mesh configurations in each frame relative to the density of the
dataset under consideration. On the other hand, the cost of con-
struction is largely dependent on the number of meshes.
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Figure 10: Average BVTT size across frames.

Comparison against I-Cloth [TWL*18]: Table 3 presents the
results of our method applied to larger datasets from the I-Cloth
benchmark suit by Tang et al. [TWL*18] (see Fig. 11). Our method
is on average 59.8× faster than I-Cloth, achieving up to 97.7×
on the largest dataset which is Bridson-3, with 198k triangles. We
compare against their publicly available CUDA source code with
measured average timings per-frame. These measurements are ob-
tained with nvprof and nvidia-smi tools, where we compare
specifically against their collision detection kernels and without in-
cluding the execution time for resolving collisions. Table 3 shows
a comparison of runtime memory costs with I-Cloth. We compared
against memory figures which are a 25% proportion of the values

reported by the nvidia-smi tool, making our measurements es-
timations due to source code access restrictions. Our method per-
forms collision detection using less than 10% memory relative to
I-Cloth (actual GPU RAM used). Note that the I-Cloth source-code
simply provides a C++ interface to pre-compiled libraries.

(a) Bridson-3 (b) Andy (c) Bridson

Figure 11: I-Cloth benchmarks (source: [TWL*18])

7. Discussion

The implicit tree is a technique used in computer graphics which
is usually ideal when a BVH is perfectly balanced or the node
payload size is relatively small. We have presented an adaptation
of BVH representation in memory which is characterised by us-
ing the implicit binary tree for final topology, and a novel way to
encode the (logical) layout. Thus, our approach improves the gen-
erality, efficiency and scalability of classical implicit trees through
a novel encoding of their structure using simple bitwise manipula-
tions. With this adaptation, BVH traversal and construction are per-
formed while assuming an implicitly defined structure, but we store
nodes compactly in memory, and without post-processing (where
the storage cost scales linearly with the number of objects). We
demonstrated the advantages by comparing against the state-of-
the-art for GPU-based collision detection. We also presented a fast
construction algorithm which when combined with our simple col-
lision detection pipeline enabled a decoupling of performance from
BVTT front tracking and BVH refitting. Consequently, our pipeline
is able to perform collision detection in a reasonably short time -
with BVH construction occurring every frame.

Our tree layout requires a small number of redundant nodes to
retain the benefits of implicit trees. The layout requires ‘support’
nodes with only one child (e.g. node 12, Fig. 3) to maintain the
implicit structure, which is a side-effect of moving virtual nodes to
the right, and placing all leaves at the lowest level. However, in the
worst-case (t−2blog2 tc = 1), storage costs are only approximately
Nr = Nc× (.5+ ε), where

ε =
log2(t)

Nc
≡ count_set_bits(Lv)

Nc
(11)

accounts for the number of support nodes. Thus, our ostensibly-
implicit layout is most effecient when t is just a few increments off
on the short side from creating a full tree, reducing memory costs
by up-to approximately 50%.

Limitations & Future Work: The tree layout, as currently de-
fined, is constrained to labelling nodes using breadth-first search
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I-Cloth [TWL*18] Ours Comparison

Benchmark Triangles Objects Frames Time Runtime
Memory (mb)

Time (stdev)
Runtime

Memory (mb)
Perf’

Speedup
Mem’

Reduction (%)

Andy 127k 4 80 121.58 498.5 2.65 (0.02) 41.16 45.87× 91.7
Bridson 18k 2 867 17.93 456.25 0.5 (0.02) 6.62 35.86 × 98.54
Bridson-3 198k 4 842 392.97 534.75 4.02 (0.17) 85.4 97.7× 84.02

Table 3: I-Cloth [TWL*18] benchmark execution time in milliseconds (see also Fig. 11).
.

(BFS), thus alternative depth-first search (DFS) optimizations can-
not be applied during traversal. DFS is particularly useful when
optimizing for cache coherent data accesses as cache lines will be
potentially filled with nodes on the traversal path to the leaves. In
choosing BFS, we favour traversal patterns that span the search
across neighbouring branches to maximise workloads. In future
work, we wish to bridge these layouts (and others, like the van
Emde Boas layout [EB75]) for the benefit of cache efficiency since
BFS may not fit all applications.

As a categorically “fast-construction” approach, our technique
emphasizes build performance and simplicity which can limit BVH
quality by a considerable amount in some cases. We achieve per-
formance by simply pairing nodes at each level and without look-
ing at the actual radix bit values to construct the hierarchy. This is
indeed fast for tree construction, but fails to account for adjacent
pairs of triangles in a sorted list that are spatially far apart. The al-
ternative LBVH [Ape14] produces trees which consider this spatial
adjacency, and thus the quality is better as presented in Table 4. We
also conduct an experiment where we gradually move one trian-
gle away from the original mesh (see Fig. 12) to examine how the
quality of the BVHs by our method and those by LBVH varies with
respect to the distance of the separate triangle (from 0 to 10 times
the model diameter). The ratio of the SAH by the two methods are
plotted in Fig. 13. As expected, the SAH cost of our method grows
much faster compared to the LBVH, which reveals the weakness of
our approach. Therefore, we trade BVH quality for simplicity and
construction performance, which is fast but requires further consid-
eration for building good quality trees.

Scene (#tris) LBVH ([Ape14]) Oi-BVH (ours) SAH Cost Increase

Happy Buddha (1087k) 86 229.16 -2.66×
Hairball (2880k) 669.8 1122.34 -1.67×
Dragon (873k) 77.43 201.54 -2.6×

Table 4: Comparison of surface area heuristic (SAH) with the
LBVH [Ape14]. We compute SAH using Eq. 1 in [AKL13].
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Appendix A: Bi-directional Implicit Binary Tree Exploration

Here we describe a scheme to access ancestor and descendant
nodes within a pointer-less implicit tree in O(1) time, which are
operations used during BVH construction and traversal. We assume
that nodes are labelled in BFS order (see Fig. 4).

Given an implicit tree that is full, the immediate relatives of a
node with an implicit index i, (0≤ i) are computed by parent(i) =⌊

i−1
2

⌋
, child(i, j) = 2i+ j,(1 ≤ j ≤ 2). To allow for arbitrary in-

dexing, we compute an n-th generation descendant j of a node i by

j = 2ni+2n−1+ k, 0≤ k < 2n, (12)

where k is the relative position of j w.r.t the leftmost descendant.
Eq. (12) shall reduce to i as n→ 0 thereby satisfying the min-heap
property [CLRS09], where parent(i)≤ i for every node i other than
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the root since it has the lowest index. The inverse relation to deter-
mine the node i as the n-th generation ancestor of j is obtained
from Eq. (12) by

i =
1
2n ( j− k+1)−1, (13)

which shall reduce to j as n→ 0.

Appendix B: BVH Construction Scheduling Parameters

Given the total number of real leaf nodes and the preferred num-
ber of threads in a group, we show that the remaining parameters
needed to run multi-kernel construction can be pre-computed for
seamless batch scheduling. These scheduling parameters are com-
puted by

rk+1 =

⌈
rk
gk

⌉
(14)

tk+1 =
tk
gk

(15)

gk+1 =

{
gk if gk ≤ tk+1

2blog2(rk+1)c otherwise.
(16)

For each kernel k: rk is the total number of real nodes at the corre-
sponding entry level; tk is the total number of threads; and gk is the
number of threads per group.

Initial parameter values are set either by the user or depending
on configurations. As we assume that each leaf node stores one
triangle, r1 is the number of triangles in the BVH being constructed.
Next, g1 =min(guser, Lc) is set by the user, and with the condition
that guser is a power of two. Our condition on g1 ensures that we
can calculate t1 = g1

⌈
r1
g1

⌉
to allow seamless mapping of thread-

groups to subtrees which have leaves whose total is a power of
two.

Appendix C: κ-ary Trees

An extension to κ-ary ostensibly implicit trees (κ = 2,3,4, etc.)
is briefly described in this section, which is similar to descrip-
tions given in Section 3.1 and Section 3.2. We start by defining
a set Xκ(Lv) = {κy1 ,κy2 . . . ,κyN} ,yi ∈ Yκ(Lv), where Yκ(Lv) =
{y1,y2, . . . ,yN}, such that

y1 = blogκ (Lv)c
y2 =

⌊
logκ

(
Lv−κ

y1
)⌋

· · ·

yN =

⌊
logκ

(
Lv−

N−1

∑
i=1

κ
yi

)⌋
.

The total number of virtual nodes in the tree will then be
(cf. Eq. (5))

Nv =
N

∑
i=1

(
κxi−1
κ−1

)
, xi ∈ Xκ(Lv), (17)

and memory locations are computed as in Eq. (9) but with

Lvl =

⌊
Lv

κl̄−l

⌋
, (18)

as the general form of Eq. (8) for an implicit tree with κ children
per node.
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