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Motion style transfer is a technique for 
converting an actor’s motion into that 
of a different character, such as one 

that is old, depressed, happy, or hurt. Automat-
ing this process can save animators time because 
it means they do not need to create different 
variations of motions for each character. Instead, 

they can produce a single set of 
motions, which are then auto-
matically adapted for use with 
different characters.

Many previous techniques for 
style transfer have been devel-
oped. Most of these methods are 
data-driven and require a set of 
corresponding motions both in 
the neutral and characterized 
styles. These motions must be 
temporally aligned so that associ-
ated poses can be computed and a 
regression of some form learned. 
Constructing such a dataset can 
be tedious for artists, and even 
with automatic methods, obtain-

ing a good temporal alignment between motions 
can be difficult or require significant manual inter-
vention from a technical developer.

Neural style transfer, first introduced by Leon 
Gatys and his colleagues1 and later adapted for mo-
tion data by Daniel Holden and his colleagues,2 uses 
a deep neural network to perform the style transfer 
task, solving an optimization problem over the neu-

ral network hidden units to produce motion in the 
style of one clip, but with the content of another. 
This method overcomes a number of the issues with 
conventional style transfer methods. First, it only 
requires a single exemplar motion to represent the 
style rather than a database of corresponding clips. 
Second, it does not require any kind of alignment 
between content and style clips, instead calculating 
the style implicitly by taking an average over all the 
frames of the motion’s Gram matrix. Both of these 
things are appealing to developers because they re-
duce the required amount of data preparation.

One of the disadvantages of neural style transfer 
has conventionally been the speed. Instead of per-
forming a regression, neural style transfer requires 
solving an optimization problem, which is com-
putationally expensive and may take a long time.

In this article, we present a technique inspired 
by the work of Justin Johnson and his colleagues3 
that removes this speed limitation while retaining 
the other advantages of the original style transfer 
scheme.1 To do this, we train a fast feed-forward 
neural network to perform a regression task satis-
fying the constraints of the original optimization 
problem as well as new motion-specific constraints. 
We also replace the pretrained classification net-
work with an autoencoding convolutional network 
like the one used in the Holden method.2 This acts 
as a loss network that has the advantage of being 
trained unsupervised, and it is additionally used to 
fix any artifacts or noise that may be present in the 
produced motion.

Automating motion style 
transfer can help save 
animators time by allowing 
them to produce a single set 
of motions and reuse them 
for different characters. 
The proposed fast, efficient 
technique for performing 
neural style transfer of 
human motion data uses a 
feed-forward neural network 
trained on a large motion 
database. 
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State of the Art in Motion Style Transfer
We begin our discussion by first reviewing mo-
tion style transfer methods in computer graphics. 
Then we explore the use of deep-learning methods 
in data transformation with an emphasis on style 
transfer. Finally, we discuss previous motion syn-
thesis methods based on deep-learning techniques.

Motion Style Transfer
Motion style transfer is an old problem in com-
puter animation, with the idea being to import a 
style from one motion clip and apply it to another 
motion. Motion style transfer is especially useful 
for applications such as computer games, where 
the goal is to minimize the amount of motion data 
in the package.

One approach is to handle the motion in the fre-
quency domain.4,5 Neutral motions are converted 
into motions with different emotions by trans-
ferring the difference of the Fourier coefficients. 
Katherine Pullen and Christoph Bregler defined 
the style of the motion by the motion data’s high 
frequency elements and added them to a novel 
motion to transfer the style.6 M. Ersin Yumer and 
Niloy Mitra slid a window along the motion and 
applied a fast Fourier transform (FFT) to extract 
the high frequency data that represents the style.7 

Another approach is to use dynamic models. 
Eugene Hsu and his colleagues used a linear-time-
invariant model to produce a time-series model 
where the style is embedded.8 Jianyuan Min and 
his colleagues proposed a multilinear analysis ap-
proach to synthesize and transfer motion styles be-
tween actors.9 This method can be used to reduce 
ambiguity because the models can represent the 
motion data in a low-dimensional space. Another 
advantage of this method is the omission of the 
foot-contact definition to prevent the foot-sliding 
problem as the model is constructed from motion 
registration. Shihong Xia and his colleagues dem-
onstrated that human motion style transfer can 
be performed in real time by constructing a lo-
cal mixture of autoregressive models of styles and 
content that can be used to stylize a sequence of 
different motion contents, such as a walking mo-
tion immediately followed by jumping.10 The idea is 
to calculate the closest possible style from a given 
current motion using the trained model, which is 
then used to predict the next frame’s motion.

Feed-Forward Transformation and Style Transfer
Researchers have recently applied feed-forward 
neural networks for data transformation to var-
ious image processing tasks. Related works in-
clude the use of convolutional neural networks 

to transform low-resolution images to produce 
high-resolution images,11 coloring of grayscale im-
ages,12 and segmentation or semantic scene under-
standing of an image.13 Like other neural-network 
approaches, once the models are trained, they 
can easily and quickly be used to perform similar 
transformations on new input data.

Gatys and his colleagues showed that the concept 
of image transformation using deep neural net-
works can be used to combine distinct elements of 
an image by using a method known as style trans-
fer.1 Their work showed that convolutional neural 
networks can be used to combine two images by 
transferring the style of one image to the content 
of another. The combined image successfully cap-
tures the visual style of one image while preserv-
ing the content of the other. As Matthew Zeiler 
and Rob Fergus showed, each convolutional layer 
in the network captures the shape representation 
of the objects in the image with increasing levels 
of detail.14 This feature of the network can then be 
used to capture the data’s content representation. 
On the other hand, the style in the image data is 
represented as the texture characteristics, such as 
color and local features, generally encoded by the 
Gram matrix.

Recently, Johnson and his colleagues proposed a 
deep-neural-network structure with a perceptual 
loss function that can be used to carry out image 
transformation tasks such as style transfer and the 
production of high-quality super-resolution im-
ages.3 They suggested that a loss function based 
on perceptual difference can be used to improve 
the performance compared with the common 
per-pixel mean-squared-error comparison. Their 
method produces style-transferred images compa-
rable to the original style transfer scheme,1 but it is 
faster by three orders of magnitude. We adopt this 
approach, but use motion-specific constraints and 
an additional manifold projection step to make it 
suitable for use with motion data.

Deep Neural Network for Human Motion Analysis
Before their widespread success in various research 
areas, such as image transformation, the popular-
ity of deep neural networks was based on their 
ability to achieve state-of-the-art performances 
in recognition problems, especially for image and 
speech recognition. These successes can be gen-
eralized and used for other problems, including 
the classification and recognition of human mo-
tion data.15 

The earliest human-motion-synthesis tech-
niques using neural networks included the con-
ditional restricted Boltzmann machine (cRBM)16 
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and the recurrent temporal restricted Boltzmann 
machine (RTRBM).17 Although both approaches 
successfully produce human motion data, these 
motions are noisy because of the per-frame sam-
pling and because they often converge to an aver-
age pose as a result of mapping ambiguity. Katerina 
Fragkiadaki and her colleagues proposed a variant 
of recurrent neural networks to learn and synthe-
size human motion data known as the encoder-
recurrent-decoder network.18 Work by Holden and 
his colleagues showed that a convolutional auto-
encoder can be used to learn a manifold of human 
motion.19 This has many purposes in research in-
cluding reconstructing, cleaning, or denoising mo-
tion data. Furthermore, the authors combined this 
autoencoder with a feed-forward neural network 
to regress from high-level user inputs to full body 
motion data.2 They then provided a framework 
to edit the generated motions using the motion 
manifold and by optimizing the motion in the 
hidden unit space to satisfy constraints such as 
bone length and foot sliding. This editing process 
can also be used to convert the motion style using 
the Gram matrix in a scheme similar to the Gatys 
approach.1 

Methodology
As we mentioned earlier, our proposed network ar-
chitecture is similar to the image transformation 
technique proposed by Johnson and his colleagues.3 
Figure 1 shows an overview of our system, which 
consists of two separate neural-network structures: 
a convolutional autoencoder network that serves 

as the loss network L and a feed-forward convo-
lutional network to perform motion style trans-
formation, which we refer as the transformation 
network T.

Data Representation
Each pose is represented by the 21 joint positions 
in 3D Euclidean space local to the character root 
projected onto the floor plane. Appended to this 
are three additional variables for turning, forward, 
and sideways velocities. This gives us 66 degrees of 
freedom (DOFs) in total per pose.

Although our proposed framework can be used 
to process motion data of any length, for train-
ing purposes motion data is split into overlapping 
windows of 240 frames at 60 frames per second. 
Any motions with less than 240 frames are padded 
with first and last frames.

Loss Network
Unlike Johnson and his colleagues3 who used a 
pretrained image classification network, the loss 
network L in our system is a convolutional au-
toencoding network trained to reconstruct the 
motion data X, which it receives as input. The pur-
pose of using such a network is to learn the latent, 
manifold structure of the motion database.19 This 
lets us partially emulate the classification network 
used in Johnson’s work,3 but in an unsupervised 
fashion.

Holden and his colleagues showed that a single 
convolution and pooling layer was enough to ef-
fectively capture motion content style in the latent 

Input motion

Neural style transfer

Back propagation

Motion manifold

Gram matrix

Lossstyle

+
Losscontent

Motion dataRegression Hidden units
Stylized motion

Figure 1. Overview of the two networks used in the proposed system. The transformation network T on the 
left (in orange) is a feed-forward convolutional network that performs the style transformation. The loss 
network L on the right (in green) is a convolutional autoencoder that represents a manifold over human 
motion and has two tasks: first help compute the loss between motion content and style and second reproject 
motion onto the manifold to fix any small artifacts resulting from the style transfer.
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variables, and as such, a deeper or more complex 
network is not required.2 We therefore follow the 
Holden construction, which we briefly revise. The 
loss network is built from a single convolution and 
pooling layer that uses a 1D convolutional calcu-
lated over the temporal dimension. The encoding 
operation can be written as follows:

L(X) = ReLU(Y(X ∗ W0 + b0)),� (1)

where the weight matrix W0 represents a tensor 
that consists of m hidden units (in our case, m = 
256), d features (in our case, d = 66), and a tem-
poral filter width of w0 (in our case, w0 = 25). 
The vector b0 represents the layer’s biases, and 
the operation Y represents a max-pooling opera-
tion used to reduce the number of features over 
the temporal axis by taking the maximum value 
between two consecutive parameters. We use rec-
tified linear units (ReLU)20 as an activation func-
tion to provide nonlinearity to the network. A 
filter width of 25 corresponds to approximately 
half a second of motion after the pooling has 
taken place, which is a reasonable length of 
time to represent most movements or movement 
components. Because our initial input has 66 di-
mensions, using 256 hidden units allows us to 
represent motion using a sparse basis, which is 
more natural than the fully correlated basis that 
is often found via methods such as principal 
component analysis (PCA). Similarly, the decod-
ing operation of the convolutional autoencoder is 
defined as follows:

L†(H) = (Y†(H)– b0) ∗ W~ 0,� (2)

where H are the hidden units produced by the for-
ward operation, Y† is the depooling operation (in 
our case, average depooling), and W~ 0  is the decon-
volution operation.

To train the convolutional autoencoder, the in-
put motion data X is encoded into the hidden unit 
space, and then decoded back to reconstruct X~ . 
The loss function

Loss X X X, †θ α θ( )= − ( )( ) +L L
2

2

1
� (3)

is then back-propagated to optimize the network 
parameters θ = {W0, b0} using stochastic gradient 
descent, where the second term is the L1 sparsity 
regularization term.

Training takes approximately 6 hours on a 
Nvidia GeForce GTX 660 GPU, but because we use 
the pretrained network from earlier work,2 for the 
purposes of this article, training is not required.

Transformation Network
The transformation network T is a simple three-
layer convolutional neural network, where each 
layer has a construction similar to the loss net-
work’s encoding layer without the pooling opera-
tion. Each layer contains 128 hidden units, and 
all but the final output layer use ReLU as a non-
linearity.

Training
The goal of this work is to train the transforma-
tion network T without explicitly providing the 
desired inputs and outputs. To do this, we use the 
given loss network to encode various constraints 
based on the preferred transformed motion.

During training, we define the transformation 
network’s loss function using the following terms.

Content. To ensure the transformation network’s 
output contains the content of the input motion 
I, we define content loss to be the difference be-
tween the hidden unit values of the input motion 
when passed to the loss network L and the hidden 
unit values of the transformed motion T(I) when 
passed to the loss network. This comparison can 
be thought of as encoding the distance along the 
motion manifold19 between the transformed and 
untransformed motion. This is scaled by a user-
specified weight c (in our case, 1.0):

Losscontent = c L(I) – L(T(I)).� (4)

Style. To ensure the transformation network’s out-
put contains the style of the given style clip S, we 
define the style loss to be the difference between the 
Gram matrix of the hidden unit values of the trans-
formed motion when passed to the loss network and 
the Gram matrix of the hidden unit values of the 
style motion when passed to the loss network. This 
follows the work of Gatys and his colleagues,1,21 and 
comparison ensures the style of the motion pro-
duced by the transformation network matches that 
of the given style clip S. This is scaled by a user-
specified weight s (in our case, 0.01):

Lossstyle = s Gram(L(S)) – Gram(L(T(I))).� (5)

The Gram matrix represents the sum over the 
temporal axis i of the inner product of the hidden 
unit values and is given by the following:

Gram H H H( )=∑ i i
T

i

.� (6)

By pairing stylized clips to their associated con-
tent clips during training, we train a transformation 
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network that can apply the style in different con-
texts. For example, given an angry style, all train-
ing clips where the content contains running are 
paired with the “angry run” style, and all content 
clips containing walking are paired with the “an-
gry walk” style. In this way, although a different 
network is required for each style, a single network 
can be trained to work for a variety of content.

Constraints. In addition to the content and style, 
it is important that the transformed motion T(I) 
respect human-motion constraints. This means 
there should be no foot-sliding artifacts, the bone 
lengths must not vary, and the trajectory should 
be similar to the input motion in shape. We there-
fore calculate additional loss functions relating to 
human-motion constraints. All these constraints 
must be scaled with respect to the units of the 
input data.

To remove foot sliding, when the feet are consid-
ered in contact with the ground (a variable previ-
ously labeled in the training data), for each foot 
joint j, we ensure that the sum of the joint’s local 
velocity v I

j
T ( ) , local translational velocity v I

r
T ( ) , 

and the local rotational velocity ωT TI Ip( ) ( )× j  ne-
gate the velocity of the root of the character rela-
tive to the forward direction r′:

Lossfoot = + × + − ′( ) ( ) ( ) ( )∑ v p v rI I I I
r j j

j

T T T Tω
2
.� (7)

For each bone b consisting of joints j1 and j2, we 
calculate the distance between the joint positions 
in the joint space of the transformed motion given 
by p I

bj1

T( )  and p I
bj2

T( )  and calculate the mean-squared 
difference of this with the given bone length lb:

Lossbone = − −( ) ( )∑ p pI I
b b b

b
j j

l
1 2

2
T T .� (8)

Given desired trajectory velocities ′vr  and de-
sired turning angle velocities ω′, we calculate the 
mean-squared error of these and the trajectory 
and turning-angle velocities of the transformed 
motion given by v I

r
T ( )  and ωT(I):

Losstraj = − ′ + − ′( ) ( )ω ωT TI Iv vr r

2
.� (9)

Training. Thus, the final loss function that takes 
into account the content, style, and motion con-
straints is finally computed as follows:

Loss = Losscontent + Lossstyle + Lossfoot + Lossbone +  
	 Losstraj.� (10)

Given this loss function, the transformation 
network T is trained using stochastic gradient 
descent with automatic derivative calculation 
performed using Theano. We use the momentum-
based optimization algorithm Adam to improve 
learning speed.22 The transformation network is 
trained for 100 epochs using a locomotion dataset 
of about 20 minutes of locomotion data. Training 
for a single style takes around 20 minutes on a 
Nvidia GeForce GTX 970. Once trained, the trans-
formation network can perform the style transfer 
task very quickly.

Manifold Projection. Data produced using deep 
neural networks often contains small amounts of 
noise or other artifacts (see Figure 2). These small 
errors may be acceptable for images, but for mo-
tion data, they greatly impact the visual quality of 
the result.

To solve this problem, we repurpose the pre-
trained convolutional autoencoder used as the 
loss network and, following earlier work,19 pass 
the transformation motion through it to project it 
back onto the motion manifold, effectively remov-
ing any undesirable noise or artifacts.

Experimental Results
We tested our method on 10 different styles and 
various kinds of locomotion including walking, 
jogging, and running. In addition to a qualitative 
evaluation, we compared our results with the most 

(a)

(b)

Figure 2. Manifold projection. (a) Images generated by deep neural 
networks often contain high-frequency noise and other artifacts. (b) 
Motion generated by our transformation network also sometimes has 
these problems (see the gray figures), but we fix this using an additional 
step of projecting back onto the motion manifold previously found using 
the convolutional autoencoder (see the blue figures).
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similar previous work: the Holden optimization-
based style-transfer method.2 For a more detailed 
look at the results, see the supplementary video at 
https://youtu.be/AvVQZjygQBQ.

Figure 3 shows a selection of style-transfer re-
sults for different styles of locomotion including 
old man, zombie, injured, and depressed, and Fig-
ure 4 shows a comparison of the two techniques. 
Our method produces results that are in most 
cases visually similar, but were generated with a 
much shorter runtime.

Table 1 gives a breakdown of the runtimes for 
each method. Our method has a vastly superior 
runtime and better scaling characteristics due to 
the transformation network’s implicit parallelism. 
All performance characteristics were recorded on 
a Nvidia GeForce GTX 660 GPU.

Unlike the Holden method,2 our method re-
quires training a database of motion data 

similar in content to the kind of motions that will 
be supplied at runtime. For example, training our 
method to perform style transfer for locomotion 
data requires a database of locomotion. For more 
specific motions, it may be difficult or undesirable 
to acquire such a database.

Our method also still requires the whole mo-
tion to be specified upfront and thus will require 
further adaptations for use in interactive applica-
tions. Additionally, although neural-style transfer 
requires little manual intervention and no data 
alignment, compared with previous style-transfer 
techniques, it can be difficult to control from an 
artistic standpoint, and often there is no clear way 
to fix undesirable results.

Experimentally, we found our method produces 
good results for motions that are not primarily lo-
comotion, such as punching and kicking. Because 
neural-style transfer is difficult to understand and 
control, future experimentation is necessary to see 
how it can most effectively be applied to different 
kinds of motion.

The manifold-projection operation used to re-
move artifacts from the stylized motion could 
introduce foot sliding. In our results, we did not 
attempt to remove this, showing only the system’s 
raw output. To be useful in production, this must 
be removed via some fast postprocess such as ana-
lytical inverse kinematics (IK).

The framework we present here is specific to 
style transfer, but it might be useful to learn other 
transformations of motion data given a single ex-
emplar (in our case, this would be the single style 
clip). For example, it might be possible to use this 

framework to transform motions for use on char-
acters of different sizes, weights, or structures.�
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Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California: 
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast: 
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

Advertising Sales Representatives (Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

ADVERTISER INFORMATION


