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Figure 1: Snapshots of conducting a basket wrapping using Geodesic Control

Abstract

We propose an effective and intuitive method for controlling flexible models such as ropes and cloth. Automating

manipulation of such flexible objects is not an easy task due to the high dimensionality of the objects and the low

dimensionality of the control. In order to cope with this problem, we introduce a method called Geodesic Control,

which greatly helps to manipulate flexible objects. The core idea is to decrease the degrees of freedom of the

flexible object by moving it along the geodesic line of the object that it is interacting with. By repeatedly applying

this control, users can easily synthesize animations of twisting and knotting a piece of rope or wrapping a cloth

around an object. We show examples of “furoshiki wrapping”, in which an object is wrapped by a cloth by a series

of maneuvers based on Geodesic Control. As our representation can abstract such maneuvers well, the procedure

designed by a user can be re-applied for different combinations of cloth and an object. The method is applicable

not only for computer animation but also for 3D computer games and virtual reality systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

Simulation of flexible objects such as ropes and cloth is a

rapidly growing area with many applications in computer

games, movies and design. However, there have not been

many solutions proposed for controlling these objects dur-

ing maneuvers such as winding, knotting and wrapping. For

example, a wrapping task called basket wrapping involves

many steps as shown in Fig. 1: putting the object at the cen-

ter of the cloth, bringing its two corners and knotting it under

the handle of the basket, then winding the other two corners

around the handle and knotting them at the top. Although hu-

mans can easily demonstrate and explain such processes to

one another, automating such maneuvers and robustly con-

trolling the cloth to reach the target configuration is not an

easy task.

The main source of the problem is the high dimensional-

ity of the flexible object. Traditionally, rope and cloth ma-

nipulations are guided through the 3D trajectories of the end

points or the corners. The rest of the object is only passively

affected by the movement of the controlled area. However,

the number of degrees of freedom of a piece of cloth is very

large. Controlling an object with a high dimensional state

space using low dimensional control signals is difficult. In

addition, the trajectories of the end-points must be planned

by global path-planning approaches to make sure that the

flexible object does not get hooked with obstacles or with

itself.
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In order to cope with this problem, we propose a method

to abstract the control of the flexible object. More specifi-

cially, it is a control method called Geodesic Control that

can significantly decrease the degrees of freedom of the flex-

ible object while also ensuring the resultant movement is al-

ways predictable. This approach is based on the observation

of the method that humans use to control flexible objects.

For example, when winding one rope around another, gener-

ally people first cross them, and then gradually increase the

contact area between the two ropes along the tangent surface

of the ropes. This strategy is robust from the control point of

view, as there is little redundancy at the region where the

knot is produced. A similar idea can be used when wrap-

ping a cloth around an object; the surface contact area can

be gradually increased until the cloth covers the whole ob-

ject. Using Geodesic Control, a significant reduction in the

complexity of the control can be achieved. At the level of

winding and wrapping, global path planning is not needed

as the flexible object simply moves either along the geodecis

line defined on the surface of the object or that of its convex

hull.

Using Geodesic Control, the process of making “furoshiki

wraps”, a style of wrapping and knotting cloths to carry ob-

jects, can be abstracted to a simple Finite State Machine

(FSM). The same FSM can be used to wrap objects of differ-

ent shapes. The wrapping maneuvers can be synthesized in

interactive time, which means the method is not only appli-

cable for offline animation for films but also for interactive

applications such as computer games and virtual reality sys-

tems.

Contributions

1. We propose a control approach called Geodesic Control,

which significantly reduces the complexity and increases

the robustness of winding and wrapping maneuvers.

2. We propose to abstract complex wrapping styles by a

FSM composed of a series of Geodesic Control maneu-

vers. Using this FSM, we can automatically wrap objects

of different geometries.

2. Related Work

Although intensive research has been conducted in the area

of cloth and rope simulation for accelerating the simula-

tion [BW98], synthesizing local deformation effects such

as buckling effects [CK02], collision detection [THM∗03,

CTM08, HVS∗09], collision handling [BFA02] and learn-

ing the physical behaviour to synthesize animation in real-

time [dASTH10,WHRO10], few of them have an emphasis

on cloth manipulation. Demo animations in cloth simulation

are usually limited to movements of clothes worn by human

characters, stretching and bending of a piece of cloth, and

the movements of a flag or curtains in the wind. In such ex-

periments, the state of the cloth is constant or only passively

changing. Our focus is on maneuvers that actively change

the state of a cloth with respect to other objects or with it-

self.

In the rest of this section, we first review computer anima-

tion papers that focus on the manipulation of flexible objects.

Next, we review papers that deal with folding paper / cloth

and knotting ropes in the wider field.

Animation of flexible models

A simple approach for manipulating cloth is to use

keyframe animation. Wojtan et al. [WMT06] propose a

method to let particles move through the keyframe config-

urations while keeping the movements plausible. This ap-

proach requires a large number of keyframes for creating any

animation that involves a lot of close contacts to avoid pene-

trations, which can be time consuming. Another problem is

that there is no abstraction that makes the keyframes applica-

ble for arbitrary pairs of cloth types and objects. Therefore,

if the cloth or an object is changed, it will be necessary to

edit the keyframes or even insert new keyframes to produce

a valid animation.

Igarashi and Hughes [IH02] propose a user interface to

put clothes onto characters. The user draws marks on the

clothes and on the body. The system then puts the clothes on

the body so that the corresponding marks are matched. Al-

though this approach can significantly reduce the effort re-

quired for creating static configurations, it does not provide a

description about the dynamic manipulation processes such

as wrapping or knotting.

Brown et al. [BLM04] propose a method to stably simu-

late the manipulation process of knotting a rope. The tip par-

ticle, called the leader, is controlled to produce knots. The

manipulation process is manually created and the maneuver

is encoded only by the 3D trajectory of the leader.

Igarashi and Mitani [IM10] provide a 2D interface to

specify the layer order and simulate a knotting process. The

layered representation is defined in 2D space. It is not conve-

nient for operations such as wrapping, which require direct

control in 3D. Ho and Komura [HK09] represent the tangles

made between characters by using Gauss Linking numbers.

Their method is also limited as they can only represent the

relationship of 1D strands.

To summarize, previous researches on manipulation of

flexible objects are either limited to direct control and

recording of the raw geometry, or have limits on the dimen-

sions they can handle.

Folding cloth / paper and knotting ropes

In the field of Robotics, work has been done on the topic

of folding paper [BM08] and cloth [SIT∗09, MSCTLA10].

Much of the folding research is built on top of the theories

established in the field of computational geometry such as

judging whether the crease patterns are foldable [ABD∗01]

and designing crease patterns to fold a target object [Lan96].
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Figure 2: Workflow of our system. The arrows in the finite

state machine represent the transitions betwen the abstract

states.

The folding operations are defined by crease patterns, which

are specific to the individual geometry of the paper and cloth.

In such representations, there is no room for abstraction that

would make them applicable to arbitrary papers or cloths.

Research with abstraction of complex behaviours can be

found in robotics research which makes use of knot theory.

Several robotics researchers have developed knotting robots

that abstract the status of the strands and plan the maneu-

vers by probabilistic roadmaps [SI07, TMO∗06, MTAF06,

WAH06]. The roadmap approach is convenient for breaking

down the control problem into smaller subproblems. The key

points in such an approach are the state representation of the

flexible object and the algorithm to convert the abstract state

transitions into geometric movements. Previous methods of

rope manipulation represent the state based on how the ropes

are overlapped with each other when viewing it from a spe-

cific direction [DT83], and the state transition is realized

by moving the end points. Such a representation requires

observing the rope from a specific viewpoint and the con-

trol strategy requires imposing multiple constraints [SI07],

which can be impractical from the control point of view.

In summary, the roadmap approach can greatly ease the

complexity of manipulating cloth. We also apply such an ap-

proach in this paper. However, more research is needed for

abstraction and bridging the gap between the abstract repre-

sentation and the geometric instantiation.

Table 1: The maneuvers for knotting two ropes

name attributes

Crossing sign, crossing position, control points

Winding sign, orientation angle

Tightening winding/knots

3. Overview

The general design of the system is shown in Fig. 2. Our

system produces animation where ropes and cloths are ma-

nipulated by following a Finite State Machine (FSM) whose

states are connected by discrete maneuvers listed in Table 1

and Table 2.

Among the discrete maneuvers, knotting and wrapping

are both guided by Geodesic Control. The Geodesic Control

requires defining the control line and the target line, which

are both geodesic lines. defined either over a strand, cloth or

an object. The basic idea of Geodesic Control is to gradually

increase the contact area of the control line and the target

line. The target lines are geodesic lines defined over the sur-

face of the target rope for winding, and the surface of the

target object for wrapping.

In 2D manifolds, geodesic lines are known as the locally

shortest paths between points and are parameterized with

constant velocity. They can be computed by extending a

straight line on the flattened shape. They may not necessar-

ily be the shortest curve connecting two points, as a curve

connecting two points on a sphere by the greater arc is also

a geodesic line.

For knotting ropes, the user specifies the part of the rope

or cloth that should be used to make the knot, and selects

what kind of knots should be made (green transitions in

Fig. 2). Knotting is done by conducting a series of wind-

ing processes on the specified region of the cloth, which is

guided by Geodesic Control. Although arbitrary knots can

be synthesized by combining simple winding operations, we

have prepared a number of template knots to ease the knot-

ting process. The basics of knotting and how it can be guided

by Geodesic Control is explained in Section 4.

Geodesic control can also be applied for manipulating

cloth. For wrapping, the user specifies the area of the cloth

and the object that is to wrap / be wrapped through our user

interface (blue transitions in Fig. 2). Wrapping is guided by

gradually increasing the contact area of the control line of

the cloth and the target geodesic line defined over the object

or its convex hull. We can also knot two ends of cloth as we

do with ropes. This process is explained in Section 5.

Using these techniques, examples of controlling ropes and

producing wrappings using Geodesic Control are presented

in Section 6.

Table 2: The maneuvers for manipulating cloth

name attributes

Anchoring position of cloth and object

Wrapping control line, geodesic line (target object)

Crossing control lines, location

Winding control lines (active/target), direction

Tightening winding, direction

c© 2012 The Author(s)
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Figure 3: (top) The process of producing a self-knot by

crossing the strand and winding around it. (bottom) The pro-

cess of producing a granny knot by repeating the crossing

and winding.

4. Knotting Ropes by Geodesic Control

Most knots in daily life such as self-knots and granny knots

can be produced by repeating the process of crossing and

winding the ropes. A self-knot can be produced by crossing

the strand with itself and conducting a winding (see Fig. 3,

top). For a granny knot, after one winding is done, the two

ends are raised again, crossed at the middle point, and an-

other winding is conducted (see Fig. 3, bottom).

We automate the knotting process by dividing it into the

steps listed below. Let us assume that we wind an active rope

denoted byC around a target rope denoted by T . Both ropes

are composed of particles connected with rigid rods of con-

stant length.

1. C and T are moved towards each other until a cross is

produced at point X .

2. A geodesic line G is computed over T ’s bounding tube.

Starting from X , C is wound around T by gradually in-

creasing the contact area of C and G.

3. The configurations of G and T are updated by optimiza-

tion, taking into account the physical properties of the

ropes, collisions and external forces.

4. Pull the two end of the rope to tighten the winding / knot.

Step 3 is repeated untilC and T are wound as desired. Knots

are produced by repeating 1-4 for different windings. The

individual processes are described below.

4.1. Crossing two ropes

The initial process of winding two ropes is to cross the two

ends. Although there can be many ways to produce a cross,

our strategy is to lift the two ropesC and T , set a target point

X in the middle and bring the ropes towards it. We take this

approach because of the following reasons: (1) we want to

make a symmetric knot in the middle of the space between

the two ends for aesthetic reasons, and (2) more open space

will be available to manipulate the rope after lifting because

gravity will pull down the rest of the rope.

Let us explain the procedure of crossing the two ropes.

A coordinate system is produced as shown in Fig. 4(a)), by

(a) (b) (c)

Figure 4: (a) The state of the two ropes when they are

crossed. (b) Positive and (c) negative crosses.

Figure 5: Snapshots of a blue rope wound around a red

rope using Geodesic Control. An bounding tube is produced

around the red tube, and a geodesic line is defined on its

surface.

using the constrained bottom points of the two ropes and

the vertical direction. The two ropes are crossed at a point

X , whose x,z coordinates are at the middle of the two bot-

toms while the height (y coordinate) is set higher than the

two bottoms. The two ropes are moved towards X : their z

coordinates are slightly adjusted such that they do not col-

lide with each other. A positive cross is produced in the case

where a positive wind is to be made, and vice versa for a

negative cross (see Fig. 4(b), (c)).

4.2. Winding the two ropes

Here we explain the process of winding the rope C around

the rope T . In order to ease the winding process and make the

wind / knot appear horizontal and symmetric, T is straight-

ened for a short distance along the x axis before the winding

is started.

The winding starts by first computing the bounding tube

of T , which is denoted by B, and then gradually attaching

C onto the geodesic line G defined on B. (see Fig. 5). The

radius of B is set to rC + rT + ε, where rC,rT are the radius

of C and T , respectively, and ε is a small value that is set

to 0.1× (rC + rT ), such that the two ropes are tightly wound

with each other when the particles of T are located on B.

The geodesic line G starts from XG, the point where the

crossing point X is projected onto the bounding tube B. Let

us also define the point that is closest to X on curve T as XT .

At XG, G proceeds in the direction of nCX , which is computed

by orienting the direction of the rope T at XT around
−−−−→
XTXG

for θ (0< θ <
π
2 ) (see Fig. 6, left). θ is decided according to

how much the user wants to spread the winding across T : a

smaller value will make it wider and a larger value will make

it tighter (see Fig. 6, right).

G is extended along T until the winding integral [BP06]

c© 2012 The Author(s)
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Figure 6: The orientation of the normal of G with respect to

the negative normal of T at XC (here denoted by θ) deter-

mines how much the winding spreads over T (left). A tighter

winding produced by a larger θ (right).

reaches the target value w0. The winding integral can be

computed by

Z x1

x0

x̂ · rGT (x)× r′GT (x)

|rGT (x)|2
dx (1)

where x is the direction of winding which is set to the di-

rection of T at XT , x̂ is the normal vector in the x direction,

[x0,x1] is the range of computing the winding integral along

the x axis, and rGT (x) is the vector connecting G and T in

the y−z plane at each x value (see Fig. 7, left). w0 is the num-

ber of times we want C to wind around T , which is mostly

1 for knots that we make in daily life, such as self-knots

and granny knots. The winding integral is equivalent to the

Gauss Linking Integral used by Ho and Komura [HK09] but

requires only a single integration. It is only applicable when

the axis of winding does not turn more than 90 degrees: if

that is the case, we need to use the Gauss Linking Integral.

The winding proceeds by iteratively moving each particle

pCi ofC to its target location ti sampled overG. Starting from

XC, ti is sampled at every distance r, where r is the distance

between every adjacent particle inC. Every time pCi reaches

its target location ti, the control switches to the next parti-

cle pCi+1 (see Fig. 7, right). We use a constant distance for

r, although it is also possible to adaptively subsample more

particles in the middle according to the existence of obsta-

cles, and curvature of the other rope, as done in [ST08].

This control strategy for winding is simple and stable. It

requires no global path planning as each particle is already in

the vicinity of the target location after the previous particle

is in contact with G. It also works under a condition that T is

dynamically moving. In that case, G is dynamically updated

according to the movement of T , and the target locations

r   (x )GT 1

T

XT

XG

G x

r   (x )GT 0

p2

C
T

XT

G

p1

C

p0

C

t 1
t 0

t 2

Figure 7: (left) The winding is computed by integration

along the normal vector of T at XT . (right) C winded around

T by gradually attaching particles pCi from XT .

of the particles are updated. Using the geodesic line as the

target line stabilizes the control and the state of the rope as

it is the locally shortest path. We will only need to constrain

the last particle of pCi to preserve the contact ofC and T . This

is an important feature especially when controlling robots to

wind ropes.

4.3. Computing the movements of the control lines

For computing the movements of the ropes, we use an op-

timization framework that takes into account external force,

inextensibility and bending stiffness of the ropes, kinematic

constraints and collisions. Technically, we employ an idea

similar to the Fast Projection [GHF∗07]: we first simulate

the movements of the particles composing the rope by only

taking into account the gravity, and then, project the updated

position of the particles to a manifold that satisfies the con-

straints by solving an optimization problem. The individual

constraints and the optimization process is explained below.

Inextensibility constraints:A control line or a rope is mod-

elled by particles whose positions are pi where i ∈ [0 : n−1]
and links between them whose length are r. The inextensi-

bility constraints can be formed as:

Ce =‖ pi+1 −pi ‖
2 −r2 = 0. (2)

Bending stiffness: For bending stiffness, we reformulate the

idea used in [Jak01] as below:

Cb =‖ pi+1 −pi−1 ‖ −2r = 0. (3)

Kinematic constraints: The active rope is controlled by

moving one of its particles pc towards its target location pt .

As pt can be too far away from pc to be reached by one step,

a series of intermediate target points pk = k
nc−k

pc+ 1
nc
pt(k ∈

[1 : nc−1] are defined, where nc is a constant integer defined
by the initial distance between pc and pt . At every iteration,

the following kinematic constraint is imposed:

Ck =‖ pc −pk ‖= 0. (4)

Collision constraints: We model ropes by linked capsules.

The collisions between two capsules si and s j can be re-

solved by imposing the following constraint:

C
si,s j
c = D(Capsulesi ,Capsules j )− (rsi + rs j ) >= 0 (5)

whereD() returns the shortest distance between the two cap-
sules, and rsi ,rs j are the radii of the two capsules, whose val-

ues are same as rC and rT . We do not apply this constraint

to adjacent capsules in each rope as their ends are already

overlapping to compose the rope.

Projection to the manifold of constraints: After adjust-

ing the particle locations of the control ropes based on the

gravity, their positions are mapped on to the manifold of

the constraints defined above. This is done by computing

the minimum particle displacement ∆p = (∆p
⊺

1 , ...,∆p
⊺

n )⊺

c© 2012 The Author(s)
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needed for satisfying all the constraints. As the inextensibil-

ity constraints, bending stiffness and collision constraints are

nonlinear, we linearize them by the finite difference method.

The collision constraints are handled as hard constraints as

they are essential for preventing penetrations, which are vi-

sually influential. The rest are handled as soft constraints to

increase the adaptiveness of the ropes. ∆p is computed by

solving the following optmization problem:

min
∆p

1

2
∆p⊺∆p+

1

2
a‖Je∆p−α‖2 (6)

+
1

2
b‖Jb∆p−β‖2 +

1

2
c‖Jk∆p− γ‖2

subject to

Jc∆p+σ = 0 only imposed if σ < 0 (7)

where (α,β,γ,σ) and (Je,Jb,Jk,Jc) are the values and Jaco-
bians of (Ce,Cb,Ck,Cc), respectively. and a,b and c are co-

efficients where a = exp(abs(α)×10),b = 2000,c = 3000.

A solution can be obtained by solving the following sparse

linear equation:

(

I+J
⊺

e Je +J
⊺

b Jb +J
⊺

k Jk J
⊺

c

Jc 0

)(

∆p

λ

)

=

(

aJ
⊺

e α+bJ
⊺

bβ+ cJ
⊺

k γ

−σ

)

(8)

After ∆p is computed, the particle locations are updated by

adding the corresponding elements to pi. This procedure can

be iterated until all the constraints are satified, although we

find the first iteration usually produces satisfactory results.

5. Controlling Cloth by Geodesic Control

The idea of Geodesic Control explained in the previous sec-

tion can be applied for controlling cloth to wrap it around an

object or knotting two ends of cloth. We explain about these

processes in this section. Knotting is done in the same way

as ropes, but with an additional procedure based on medial

axes to reduce the self-penetrations between the cloth.

5.1. Wrapping by Geodesic Control

Each wrapping maneuver is achieved by gradually increas-

ing the contact area of the control line of the cloth with the

target curve defined over the object or its convex hull. The

procedure to compute these lines and control the cloth us-

ing them is first explained. The movement of the rest of the

cloth is computed passively using a generic simulator based

on particle physics. This process is explained next.

Guiding wrapping by control lines: We now define a con-

trol line and a target line on the cloth and object, respectively

to guide the cloth to wrap around the object by Geodesic

Control. The control lines are straight lines over the cloth

defined by the user. In most cases, they are lines connecting

control line

target line

control line

target line

(a)                                      (b)

Figure 8: (a) The control line on the cloth and the target line

on the object. (b) The cloth wrapped around the target object

by overlapping the control line on the target line.

the center and the corners of the cloth. The target lines are

geodesic lines defined either over the wrapped object or its

convex hull, depending on the wrapping style. In the initial

configuration, the control line must be in contact with the

target line (see Fig. 8, left). Either the object must be shifted

over the cloth or the target curve needs to be redefined if this

condition is not met.

As the degrees of freedom of a cloth is much greater than

that of a rope, it is necessary to further constrain it to make it

robustly wrap around the object. This is achieved by strain-

ing the cloth in the direction of the control line, which eases

the process of overlapping the control and the target line.

After the cloth is strained, the control line is overlapped

with the target line by bending it at the edge of the object

that the control line is in contact with (see Fig. 8, right). The

control line is rotated until it fully contacts the target curve

on the polygon that includes the last contact point. This pro-

cess is repeated until the control line fully overlaps with the

target line. In practice, the cloth is manipulated by the series

of particles defined over the control line. Their movements

are updated by solving the optimization problem described

in Section 4.3.

Cloth movements by particle physics:Once the movement

of the control lines are computed, we constrain the position

of the particles that compose the control lines and compute

the movements of the rest of the cloth particles by a generic

simulator based on particle physics. Regarding the physi-

cal properties, we take into account the stretchiness and the

bending stiffness between the particles, whose values are set

to 0.9 and 0.011. The distance between the particles in the

grid are set to 0.2 and the thickness of the cloth is set to 0.3,

which produces a bounding sphere whose radius is 0.15 for

collision detection. We use PhysX 2.84 [NVi] for the physi-

cal simulator.

5.2. Knotting Cloth

For knotting cloth, we apply the Geodesic Control to the

control lines that are defined on the surface of the cloth. Sim-

ilar to the process of winding ropes, we define the active line

and the target line. A bounding tube of a constant radius is

c© 2012 The Author(s)
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Figure 9: Self-penetrations happening during knotting two

ends of a cloth by a generic simulator (left). They can be

greatly eliminated by separating the ends by the medial axis

(right).

defined around the target curve, and a geodesic line is com-

puted on the surface of the tube. Finally, the active curve is

wound around the target curve by gradually locating the par-

ticles of the active curve around the bounding tube. The tube

is defined only for a short distance around the area where

the winding is going to be made. This is to avoid a large area

of the cloth to be squeezed. The radius of the tube is com-

puted based on the amount of cloth involved in the knotting.

We also add an extra post-processing stage to minimize the

amount of cloth-cloth penetration. These processes are ex-

plained below.

Reducing self-penetration using the medial axis: Self-

collision is a serious issue for particle-based cloth simula-

tors. The artifacts are evident when simulating complex in-

teractions such as knotting using generic simulators that use

naive collison detection approaches (see Fig. 9, left). Al-

though its effect can be reduced using asynchronous step-

ping as done in [HVS∗09], this requires a huge amount of

computation, which may not be acceptable for real-time ap-

plications. Here we eliminate such artifacts by inserting an

additional medial axis layer (medial sheet) between the two

control lines (see Fig. 10,(a)) and forcing the associated par-

ticles to stay on the same side of the medial sheet.

Each free particle f is associated to a region of the control

line composed ofM line segments, which is denoted here by

Lf. Lf is the closest set of line segments from f along the

surface of the cloth that is composed ofM line segments (M

is set to 3 in our examples). Fig. 10,(b) shows an example of

free particles and their associated line segments.

After computing p f , which is the position of particle f ,

using the physical simulator while constraining the control

lines, we examine the distance between f and all the line

segments; if the closest particle is not included in Lf, it is

moved towards the closest point on Lf. More specifically,

let us denote by dif the distance between f and all the line

segments li(i ∈ [1 : m]). If argmini d
i
f (1 ≤ i ≤ m) < Lf, we

move p f towards its projection point on Lf, which is defined

here by p
p
f . Namely, p f is updated by p f ← p f + a

p
p
f−p f

‖p
p
f−p f ‖

where a = 0.01. This process is applied for all the free par-

ticles. Then, we run the simulation again while constraining

all the p f ’s that have been updated. This process is repeated

L
fy

p
fy

L
fg

p
fg

(a) (b)

Figure 10: (a) A visualization of the medial sheet computed

from the configuration of the two control lines. It is to be

noted that we do not explicitly compute the medial sheet. (b)

The enlarged top-left corner of the cloth : The free particles

in the yellow (p f y) and green (p f g) region are associated

to the line segments specified by the yellow (L f y) and green

arrows (L f g).

until either each free particle is closest to its associated line

segment, i.e., located within the Voronoi regions of its asso-

ciated line segment, or the maximum number of iterations is

reached, which is set to 3 in our experiments.

Our method can significantly reduce the penetrations be-

tween the two cloth-piece during the knotting procedure (see

Fig. 9, right). The twisted medial surface also helps to pro-

duce a natural effect of a cloth being squeezed.

6. Experimental Results

In this section, we first show an example of rope winding.

Next, we show examples where various furoshiki wraps are

generated by sequentially applying the winding and knotting

techniques. The readers are referred to the supplementary

video for further details of the folding process. Finally, we

explain about the computational costs.

6.1. Rope winding

We first show an example of winding one rope around an-

other moving rope in an environment with multiple obsta-

cles. Snapshots of the scene are shown in Fig. 11. This is

an example that is difficult even using manual control as it

is necessary to avoid the obstacles and unnecessary wind-

ing while following and winding around the moving rope.

Geodesic control can successfully achieve the task without

global path planning.

6.2. Furoshiki wrapping

We wrap objects shown in Fig. 12(a) by a two granny-knot

box wrapping, a wine-bottle wrapping and a basket wrap-

ping.

Two granny-knot box wrapping: A two granny-knot box

wrapping is produced by repeating the process of wrapping

and making a granny-knot at the top of the object using the

c© 2012 The Author(s)
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Figure 11: Winding one rope around another dynamically

moving rope using Geodesic Control in an environment with

obstacles.

opposite corners of the cloth. The procedure of the wrapping

can be found in Fig. 12(b), left and Table 4. We show results

of wrapping a jeep model, a sphinx sculpture and a cupid

sculpture, which all have different structures. Despite such

variations, the objects are successfully wrapped as shown in

Fig. 12(b), right.

Wine bottle wrapping: The wine bottle wrapping is suit-

able for wrapping cylindrical objects, such as a wine bottle.

The procedure of the wrapping can be found in Fig. 12(c),

left and Table 5. This wrapping involves winding the cloth

around the bottle using Geodesic Control. We show exam-

ples of wrapping a wine bottle and the cupid structure in

Fig. 12(c), right.

Basket Wrapping Finally, a basket wrapping was done to

a basket. The procedure of the wrapping can be found in

Fig. 12(d), left and Table 6. In this example, the cloth winds

around the handle, which is also guided by Geodesic Con-

trol. The result is shown in Fig. 12(d), right.

6.3. Computational Costs

Regarding the complexity of our method, the set-up and

solving of Eq.6 is O(m), computation of the medial axis and

updating the particle positions is O(m× n), and the particle

simulation of the cloth based on a generic simulator is O(n),
where m is the number of rods on the control line and n is

the number of particles composing the cloth.

The breakdown of the computation of each step in the de-

scending order is collision resolving by the medial axis, (0.2

second per frame), the set-up and solving of Eq.6 (0.016spf)

and particle simulation (0.001spf). Note that we only apply

a naive approach that computes the distance of every pair of

particles and line segments for the collision resolving. An

acceleration can be achieved by applying methods such as

oct-trees.

The cloth used in the system is composed of 26569

(163× 163) particles, and we can generate an animation of

1 second physical simulation in roughly 3 seconds, using a

system with a Intel Core i7 2.93GHz CPU, 6GB RAM and

NVidia GeForce GTS 240. The computation for one frame is

completed in around 0.22 seconds. We used UMFPACK for

solving the optimization problem and PhysX for the cloth

simulation.

(a)

(b)

(c)

(d)

Figure 12: (a) The objects that are wrapped in the furoshiki

wrapping experiment. (b) The FSM of box wrapping (left)

and the jeep, cupid and sphinx wrapped by this style (right).

(c) The FSM of wine bottle wrapping (left) and a bottle and

cupid wrapped by this style(right). (d) The FSM of basket

wrapping (left) and a basket wrapped by this style(right).

7. Discussions

One of the advantages of our method is that the complex

maneuvers of wrapping and knotting are highly abstracted.

Therefore, the description of the maneuvers are applicable

to different combinations of objects and pieces of cloth, as

far as the size of the cloth affords it.

Successful winding can be easily achieved by Geodesic

Control, even under conditions where there are multiple

obstacles or the target is dynamically moving, which can

be difficult for other methods such as Topology Coordi-

nates [HK09] or “follow the leader” [BLM04]. The Topol-

ogy Coordinates is another local control method that can be

applied for winding motion. If there are obstacles that the

rope should not wind around, the user needs to specify that

as additional constraints. When there are multiple obstacles,

c© 2012 The Author(s)
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such extra constraints can cause local minima. The follow

the leader approach requires global path planning of the rope

tips and there is a chance that the loose area gets hooked

with obstacles in the environment. Geodesic Control, how-

ever, can robustly wind around another rope or object with-

out any costly computation. The initial crossing is the only

condition for starting the control, but that is not difficult, es-

pecially for tasks in which the ropes are open ended.

Geodesic Control is a local control solution for winding

and wrapping procedures, and it is not a solution that can re-

place global path planning. In our examples, the FSM takes

on the role of global path planning. For maneuvers such as

passing the rope between a series of ropes or a narrow area,

a global path planner that provides the target geodesic lines

to follow is needed. One possible extension is to set up a

FSM that is based on homotopy groups [BLK11]. The ho-

motopy groups categorize paths based on the topology of

the paths. Once a homotopy group is given, we can compute

the geodesic path within that homotopy group.

There are several ad-hoc steps in our system. Some pa-

rameters of the each manuever are manually specified or set

by simple ad-hoc rules. For example, the geodesic lines on

the objects (the target lines) are manually defined by the user.

The user specifies the position of the end point and then a

geodesic line is computed by finding the shortest route con-

necting the two end points. One problem of this approach is

that there are cases where the geodesic line takes a different

route from that which is desired (such as taking the shorter

arc on a sphere instead of the desired longer arc). One way to

solve this problem is to let the user also specify the tangent

vector at one of the end points, compute the geodesic curve

based on this, and finally let the system adjust it such that it

passes through the other end point. Automatically deciding

parameter values such as the position of the knot based on

the geometry of the target object, the length of the control

line and the style of the wrap is a challenging but interesting

topic to work on.

Our approach can also be applied to overlap control lines

to non-geodesic lines defined on objects. As mentioned ear-

lier, the advantage of overlapping the control curve with

geodesic lines of the object or its convex hull is in its phys-

ical stability; only the last control point needs to be con-

strained to keep the same configuration. For animation pur-

poses, this condition can be dropped; an interface to letting

users draw curves on surfaces and allowing flexible objects

follow them for modeling objects and creating animation

would be an interesting extension.

8. Conclusion and Future Work

In this paper, we have proposed a method to synthesize an-

imations of wrapping and knotting cloths by introducing

discrete representations and control methods to interpolate

such representations. Currently, the movement of the flex-

ible object is guided by the control curves. For animation

and control purposes, it is necessary to realize such move-

ments through the interaction of the robot / character with

the flexible object. This is an interesting future direction for

research.
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Appendix

Here we show the sequence of maneuvers of the FSMs for

the two granny-knot box wrapping (Table 4), wine bottle

wrapping (Table 5) and and basket wrapping (Table 6). The

identities of corners, area and control lines are defined as

shown in Fig. 13. For the sake of simplicity, we first define

the granny-knot maneuver which we used for all our demos.

The maneuver takes two control lines and the knotting posi-

tion as input, and produce a granny knot.

A B

CD

1 2

34

a b
cd

Figure 13: The identities of the corners, area and control

lines defined for our experimental results.

Table 3: The maneuvers and attributes of GrannyKnot

maneuver attributes

1 Crossing control lineC and T , top of object center

2 Winding control lineC around T , top of object center, negative

3 Tightening winding made at step 2, towards center

4 Crossing control line T and C, top of winding made at step 3

5 Winding control line T aroundC, top of winding made at step 3,

negative

6 Tightening winding made at step 4, towards winding made at step 5

Table 4: The maneuvers and attributes of two granny-knot

box wrapping

maneuver attributes

1 Anchoring center

2 Wrapping corner A and C, area a and c

3 GrannyKnot control line 1 and 3,top of object center

4 Wrapping corner B and D, area b and d.

5 GrannyKnot control line 2 and 4, top of knot made at step 3

Table 5: The maneuvers and attributes of wine bottle wrap-

ping box wrapping

maneuver attributes

1 Anchoring center

2 Wrapping corner A,C and area a,c

3 GrannyKnot control line 1 and 3, top of object center

4 Wrapping corner B and area b

5 Wrapping corner D, and area d

6 GrannyKnot control line 2 and 4, front of object

Table 6: The maneuvers and attributes of a basket wrapping.

maneuver attributes

1 Anchoring corner A

2 Wrapping corner A,C and area a,c

3 GrannyKnot control line 1,3, top of bottom half of basket

4 Winding control line 2, basket handle, negative

5 Winding control line 4, basket handle, negative

6 GrannyKnot control line 2,4, top of basket handle
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