
Online Submission ID: 0242

Neural Network Ambient Occlusion

Figure 1: Comparison showing NNAO (our method) enabled and disabled, as implemented in a game engine.

Abstract1

We present Neural Network Ambient Occlusion (NNAO), a fast, ac-2

curate screen space ambient occlusion algorithm that uses a neural3

network to learn an optimal approximation of the ambient occlu-4

sion effect. Our network is carefully designed such that it can be5

computed in a single pass - allowing it to be used as a drop-in re-6

placement for existing screen space ambient occlusion techniques.7

Keywords: neural networks, machine learning, screen space am-8

bient occlusion, SSAO, HBAO, game development, real time ren-9

dering10

1 Introduction11

Ambient Occlusion is a key component in the lighting of a scene12

yet is expensive to calculate. By far the most popular approxima-13

tion used in real-time applications is Screen Space Ambient Occlu-14

sion (SSAO), a method which uses the depth buffer and other screen15

space information to calculate occlusions. Screen space techniques16

have seen wide adoption because they are independant of scene17

complexity, simple to implement, and fast to compute.18

Yet, calculating effects in screen space often creates artifacts as19

these techniques lack the full information about the scene. The ex-20

act behaviour of these artifacts can be difficult to predict. We use21

machine learning to learn a SSAO algorithm that minimises these22

errors with respect to some cost function.23

We build a database of camera depths, normals, and ground truth24

ambient occlusion as calculated using an offline renderer, and use a25

neural network to learn a mapping from the depth and normals sur-26

rounding the pixel to the ambient occlussion of that pixel. Once27

trained we convert the neual network into an optimised shader28

which is more accurate than existing techniques, has better perfor-29

mance, no user parameters other than the occlusion radius, and can30

be computed in a single pass allowing it to be used as a drop-in31

replacement.32

Our contribution is:33

• A technique for applying machine learning to screen space34

effects such as SSAO.35

• A fast, accurate SSAO shader that can be used as a drop in36

replacement to existing techniques.37

2 Related Work38

Screen Space Ambient Occlusion Screen Space Ambient Oc-39

clussion (SSAO) was first introduced by [Mittring 2007] for use40

in Cryengine2. The approach samples around the depth buffer in a41

view space sphere and counts the number of points which are in-42

side the depth surface to estimate the occlusion. This method has43

seen wide adoption, but often produces artifacts such as dark ha-44

los around object silhouettes, or white highlights on object edges.45

[Filion and McNaughton 2008] (SSAO+) sampled in a hemisphere46

around the pixel oriented in the direction of the surface normal.47

This removed the artifact related to white highlights around object48

edges and reduced the required sampling count, but still sometimes49

produced dark halos. [Bavoil et al. 2008] introduced Horizon Based50

Ambient Occlusion (HBAO), a technique which predicts the occlu-51

sion amount by estimating how closed or open the horizon is around52

the sample point. Rays are regularly marched along the depth buffer53

and the difference in depth used to calulate the horizon estimate.54

This was extended by [Mittring 2012] improving the performance55

using paired samples. This produces a more realistic effect but does56

not account for the fact that the camera depth map is an approxima-57

tion of the true scene geometric. [McGuire et al. 2011] introduced58

Alchemy Screen-Space Ambient Obscurance (ASSAO), an effect59

which substitutes a fixed falloff function into the general lighting60

equation to create a more physically accurate integration over the61

occlussion term. ASSAO produces a physically based result, but62

still does not deal directly with the errors introduced by the screen63

space approximation.64

Machine Learning for Screen Space Effects So far, machine65

learning has seen very limited application to rendering and screen66

space effects. In offline rendering [Kalantari et al. 2015] used ma-67

chine learning to filter the noise produced by monte carlo render-68

ing at low sample rates. [Ren et al. 2015] used neural networks to69

perform image space relighting of scenes, allowing users to virtu-70

ally adjust the lighting of scenes even with complex materials. Fi-71

nally [Johnson et al. 2011] used machine learning alongside a large72

repository of photographs to improve the realism of renderings -73

adjusting patches of the output to be more similar to cooresponding74

patches of photographs in the database.75

3 Preprocessing76

To produce the complex scenes required for training our network77

we make use of the geometry, props, and scenes of the Open Source78

first person shooter Black Mesa [Crowbar-Collective]. We take79

several scenes from the game and add additional geometry and clut-80

1

Online Submission ID: 0242

ter to ensure a wide variety of objects and occlusions are present.81

We produce five scenes in this way, and select 100-150 viewpoints82

from which to render each scene using different perspectives and83

camera angles. From each viewpoint we use Mental Ray to render84

scene depth, camera space normals, and global ambient occlusion85

at a resolution of 1280×720. From each render, we randomly pick86

1024 pixels, and perform the following process:87

Given a pixel’s depth we use the inverse camera projection matrix88

to calculate the position of the pixel as viewed from the camera (the89

view space position). We then take w × w samples in a view space90

regular grid centered around this position and scaled by the user91

given AO radius r. In this project we setw = 31. We reproject each92

sample into the screen space using the camera projection matrix93

and sample the GBuffer to find the cooresponding pixel normal and94

depth. For each sample we take the difference between its normal95

and that of the center pixel. Additionally we take the difference96

between its view space depth and that of the center pixel. These97

values we put into a four dimension vector. We then calculate the98

view space distance of the sample to the center pixel, divide it by99

the AO radius r, subtract one, and clamp it in the range zero to100

one. This value we use to scale the four dimensional input vector101

and ensures that samples outside of the occlusion radius are always102

zero and cannot have influence over the output. We concatenate103

these values from each sample into one large vector. This represents104

a single input data point x ∈ Rw24. We then take the center pixel105

ambient occlusion value as a single cooresponding output data point106

y ∈ R1.107

Once complete we have a final dataset of around 500000 data108

points. We normalise the data by subtracting the mean and dividing109

by the standard deviation.110

4 Training111

Our network is a simple four layer neural network. The operation112

of a single layer Φ(x)n is described by the following equation113

Φ(x)n = PReLU(Wn x + bn, αn, βn) (1)

where PReLU(x, α, β) = β max(x, 0) + α min(x, 0) is a vari-114

ation on the Parametric Rectified Linear Unit first proposed by [He115

et al. 2015] but with an additional scaling term β for the posi-116

tive activation. The parameters of our network are therefore given117

by θ = {W0 ∈ Rw24×4,W1 ∈ R4×4,W2 ∈ R4×4,W3 ∈118

R4×1,b0 ∈ R4,b1 ∈ R4,b2 ∈ R4,b3 ∈ R1, α0 ∈ R4, α1 ∈119

R4, α2 ∈ R4, α3 ∈ R1, β0 ∈ R4, β1 ∈ R4, β2 ∈ R4, β3 ∈ R1}.120

The cost function of our network is given by the following, which121

consists of the mean squared error and a small regularisation term122

controlled by the constant γ which we set to 0.01.123

Cost(x,y, θ) = ‖y − Φ3(Φ2(Φ1(Φ0(x))))‖2 + γ |θ| (2)

Using this function, the parameters of the network are learned via124

stochastic gradient descent. In minibatches of 16 random elements125

of our dataset are passed through the network and the parameters126

updated using derivatives calculated from Theano [Bergstra et al.127

2010] and the adaptive gradient descent algorithm Adam [Kingma128

and Ba 2014]. To avoid overfitting, we use a Dropout [Srivastava129

et al. 2014] of 0.5 on the first layer. Training is performed for 100130

epochs and takes around 10 hours on a NVIDIA GeForce GTX 660131

GPU.132

Figure 2: Top: overview of our neural network. On the first layer
four independant dot products are performed between the input and
W0 represented as four 2D filters. The rest of the layers are stan-
dard neural network layers. Bottom: larger visualisation of W0

represented four filters.

5 Filters133

After training, the steps performed in the data preprocessing and134

neural network forward pass need to be reproduced in a shader for135

use at runtime. The shader is mostly a straight forward translation136

of the preprocessing and neural network steps with a few excep-137

tions. This shader is provided in the supplimentary material for138

complete reference.139

As the total memory required to store the network weight W0 ex-140

ceeds the maximum memory reserved for local shader variables it141

cannot be stored in the shader code. Instead we observe that multi-142

plication by W0 can be described as four independant dot products143

between columns of the matrix and the input x. As the input x is144

produced by sampled in a grid, these dot products can be performed145

in 2D, and the weights matrix W0 stored as four 2D textures called146

filters. These 2D textures are then sampled and multiplied by the147

cooresponding parts of the input vector (see Fig. 2).148

Performing the dot product in 2D also allows us to approximate149

the multiplication of W0. We can take fewer samples of the filter150

images and afterwards rescale the result using the ratio between the151

number of samples taken and the full number of elements in W0.152

We use stratified sampling - regularly picking every nth pixel of the153

filters and multiplying by the cooresponding input sample, finally154

multiplying the result by n. We also introduce a small amount of155

2D jitter using random noise to spread the approximation over the156

image. This allows us to accurately approximate the multiplication157

of W0 at the cost of some noise in the output. To cope with this,158

as with other SSAO algorithms, the output is post processed using159

a bilateral blur.160

6 Results161

In Fig. 3 we visually compare the results of our method to SSAO+162

(with 16 samples) and HBAO (with 64 samples), and to the ground163

truth. HBAO in general produces good results, but in many places164

it creates areas which are too dark. See: under the sandbags, behind165

the furniture, inside the car, between the railings, on the stairs, be-166

hind the pillar to the left of the truck. Additionally HBAO requires167

almost twice the runtime of our method to produce acceptable re-168

sults (See Fig. 4).169

In Fig. 1 we implement our method in a game engine. This170

2

Online Submission ID: 0242

Figure 3: Comparison to other techniques. From left to right: SSAO+, HBAO, NNAO (Our Method), Ground Truth.

shows that the trained network is generalisable beyond the situa-171

tions present in the training data and that it works well in interactive172

applications. Please see supplementary video for a long demonstra-173

tion of this.174

In Table. 1 we perform a numerical comparison between our175

method and previous techniques. Our method has a lower mean176

squared error on the test set with comparable or better performance177

to previous methods. All measurements are taken at half resolu-178

tion renderings (640×360) on a NVIDIA GeForce GTX 660 GPU.179

Due to the unpredictability in measuring GPU performance abso-180

lute runtimes may vary in practice, but the quality of NNAO re-181

mains high even with a reduced sample count.182

7 Discussion183

In Fig. 5 we visualise what is being learned by the neural network.184

We show the activations of the first three hidden units using the185

Cyan-Yellow-Magenta channels of the image. Each unit learns a186

separate component of the occlusion with cyan learning unoccluded187

areas, magenta learning the occlusion of horizontal surfaces and188

yellow learning the occlusion of vertical surfaces.189

Our method is capcable of performing many more samples than190

other methods in a shorter amount of time. Primarily this is be-191

cause it samples in a regular grid, which gives it excellent cache192

performance, but also there is no data dependancy between samples193

which gives it a greater level of parallelism. Finally each sample is194

re-used by each filter which results in less noise.195

7.1 Limitations & Future Work196

Our method is training on data that does not includes high detail197

normal maps in the GBuffer. Although our method can be used on198

GBuffers with detailed normals (see Fig. 1) it is likely our method199

would perform even better in this case if trained on this kind of data.200

Reducing the sampling count of our method below 64 does not tend201

to significantly reduce the runtime. This may be due to the opera-202

3

Online Submission ID: 0242

Figure 4: Given similar runtimes, our algorithm can perform more
samples producing less noise and a better quality output - as op-
posed to HBAO which appears blotchy at low sampling rates.

Algorithm Sample Count Runtime (ms) Error (mse)
SSAO 4 1.20 1.765
SSAO 8 1.43 1.558
SSAO 16 14.71 1.539
SSAO+ 4 1.16 0.974
SSAO+ 8 1.29 0.818
SSAO+ 16 14.46 0.811
HBAO 16 3.53 0.965
HBAO 32 4.83 0.709
HBAO 64 8.50 0.666
NNAO 64 4.17 0.516
NNAO 128 4.81 0.497
NNAO 256 6.87 0.494

Table 1: Numerical comparison between our method and others.

tions of the other layers which still need to be performed. For some203

more constrained applications this may not be ideal. Further control204

over the performance in this case is something that interests us.205

Our technique produces ambient occlusion but we see no reason206

why it could not be applied to other screen space effects such as207

Screen Space Radiosity, Screen Space Reflections and more.208

7.2 Conclusion209

We present a technique for performing Screen Space Ambient Oc-210

clusion using a neural network. After training we create an opti-211

mised shader that reproduces the network forward pass efficiently212

and controllably. Our method produces fast, accurate results and213

can be used as a drop-in replacement to existing Screen Space Am-214

bient Occlusion techniques.215

References216

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space217

horizon-based ambient occlusion. In ACM SIGGRAPH 2008218

Talks, ACM, New York, NY, USA, SIGGRAPH ’08, 22:1–22:1.219

BERGSTRA, J., BREULEUX, O., BASTIEN, F., LAMBLIN, P.,220

PASCANU, R., DESJARDINS, G., TURIAN, J., WARDE-221

FARLEY, D., AND BENGIO, Y. 2010. Theano: a CPU and GPU222

Figure 5: The activations of the first three filters represented by
the cyan, yellow, and magenta channels of the image.

math expression compiler. In Proc. of the Python for Scientific223

Computing Conference (SciPy). Oral Presentation.224

CROWBAR-COLLECTIVE. Black mesa. http://www.225

blackmesasource.com/.226

FILION, D., AND MCNAUGHTON, R. 2008. Effects & techniques.227

In ACM SIGGRAPH 2008 Games, ACM, New York, NY, USA,228

SIGGRAPH ’08, 133–164.229

HE, K., ZHANG, X., REN, S., AND SUN, J. 2015. Delving deep230

into rectifiers: Surpassing human-level performance on imagenet231

classification. CoRR abs/1502.01852.232

JOHNSON, M. K., DALE, K., AVIDAN, S., PFISTER, H., FREE-233

MAN, W. T., AND MATUSIK, W. 2011. Cg2real: Improving the234

realism of computer generated images using a large collection of235

photographs. IEEE Transactions on Visualization and Computer236

Graphics 17, 9 (Sept), 1273–1285.237

KALANTARI, N. K., BAKO, S., AND SEN, P. 2015. A Ma-238

chine Learning Approach for Filtering Monte Carlo Noise. ACM239

Transactions on Graphics (TOG) (Proceedings of SIGGRAPH240

2015) 34, 4.241

KINGMA, D. P., AND BA, J. 2014. Adam: A method for stochastic242

optimization. CoRR abs/1412.6980.243

MCGUIRE, M., OSMAN, B., BUKOWSKI, M., AND HENNESSY,244

P. 2011. The alchemy screen-space ambient obscurance algo-245

rithm. In Proceedings of the ACM SIGGRAPH Symposium on246

High Performance Graphics, ACM, New York, NY, USA, HPG247

’11, 25–32.248

MITTRING, M. 2007. Finding next gen: Cryengine 2. In ACM249

SIGGRAPH 2007 Courses, ACM, New York, NY, USA, SIG-250

GRAPH ’07, 97–121.251

MITTRING. 2012. The technology behind the ”unreal engine 4252

elemental demo”. In ACM SIGGRAPH 2012 Talks, ACM, New253

York, NY, USA, SIGGRAPH ’12.254

REN, P., DONG, Y., LIN, S., TONG, X., AND GUO, B. 2015. Im-255

age based relighting using neural networks. ACM Trans. Graph.256

34, 4 (July), 111:1–111:12.257

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER,258

I., AND SALAKHUTDINOV, R. 2014. Dropout: A simple way to259

prevent neural networks from overfitting. J. Mach. Learn. Res.260

15, 1 (Jan.), 1929–1958.261

4

