
Neural Animation Layering for Synthesizing Martial Arts Movements

SEBASTIAN STARKE, Electronic Arts and The University of Edinburgh
YIWEI ZHAO, Electronic Arts
FABIO ZINNO, Electronic Arts
TAKU KOMURA, The University of Hong Kong and The University of Edinburgh

Fig. 1. A selection of results using our system to synthesize different character fighting movements and behaviors.

Interactively synthesizing novel combinations and variations of character
movements from different motion skills is a key problem in computer anima-
tion. In this paper, we propose a deep learning framework to produce a large
variety of martial arts movements in a controllable manner from raw motion
capture data. Our method imitates animation layering using neural networks
with the aim to overcome typical challenges when mixing, blending and
editing movements from unaligned motion sources. The framework can
synthesize novel movements from given reference motions and simple user
controls, and generate unseen sequences of locomotion, punching, kicking,
avoiding and combinations thereof, but also reconstruct signature motions
of different fighters, as well as close-character interactions such as clinching
and carrying by learning the spatial joint relationships. To achieve this goal,
we adopt a modular framework which is composed of the motion generator
and a set of different control modules. The motion generator functions as
a motion manifold that projects novel mixed/edited trajectories to natural
full-body motions, and synthesizes realistic transitions between different
motions. The control modules are task dependent and can be developed and
trained separately by engineers to include novel motion tasks, which greatly
reduces network iteration time when working with large-scale datasets. Our
modular framework provides a transparent control interface for animators
that allows modifying or combining movements after network training, and
enables iterative adding of control modules for different motion tasks and
behaviors. Our system can be used for offline and online motion generation
alike, and is relevant for real-time applications such as computer games.

Authors’ addresses: Sebastian Starke, Electronic Arts, sstarke@ea.com, The University
of Edinburgh, sebastian.starke@ed.ac.uk; Yiwei Zhao, yiwzhao@ea.com, Electronic
Arts; Fabio Zinno, fzinno@ea.com, Electronic Arts; Taku Komura, taku@cs.hku.hk,
The University of Hong Kong , The University of Edinburgh.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/8-ART92 $15.00
https://doi.org/10.1145/3450626.3459881

CCS Concepts: • Computing methodologies → Motion capture; Neural
networks.

Additional Key Words and Phrases: neural networks, human motion, char-
acter animation, character control, character interactions, deep learning

ACM Reference Format:
Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. 2021. Neural
Animation Layering for Synthesizing Martial Arts Movements. ACM Trans.
Graph. 40, 4, Article 92 (August 2021), 16 pages. https://doi.org/10.1145/
3450626.3459881

1 INTRODUCTION
Interactive applications rendering virtual characters in motion, like
video games, virtual reality and various kind of simulations, desire
an increasing volume of high quality and controllable animations.
Regardless of the source of these animations, motion captured or
keyframed, it is time-consuming and technically challenging to
explicitly cover the entirety of required movements in a scalable
and controllable fashion that is easy to use. Ideally, we would like to
synthesize new motion generalizing from examples using a compact
and efficient model that can adapt to unseen situations and novel
user inputs.

Recently, data-driven approaches [Holden et al. 2017; Starke et al.
2019, 2020; Zhang et al. 2018] have proven capable of learning such
models, but they come with some key challenges: First, end-to-
end systems concatenate control signals as features on top of the
animations in order to guide the character movements by the user.
However, since those features are often abstract, such as style labels
or simplified goal variables to cause an action, the prediction can
lead to averaging artifacts due to the inherent ambiguity in the
input signal. Particularly for martial arts movements, defining such
features to accurately cover all possible motion variations can be
very challenging. Second, selecting the right features to control the
movements is often task-specific, forcing retraining of the entire
system not only whenever the application space changes, but also

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1145/3450626.3459881

92:2 • Starke et al.

until the appearance of learned movements becomes as desired.
This leads to increasingly long iteration times and can become
infeasible for very large datasets. Lastly, these methods typically do
not provide a transparent interface for animators which allows them
to intuitively control the motion generation process, which makes
it difficult to combine or modify such high-level control signals to
produce subtle variations in the generated character movements.
A more understandable mapping between control input and pose
output, both during training and inference, is desired.

In this paper, we aim to address such issues using a modular deep
learning framework capable of synthesizing fighting animations
from given reference motions into novel and unseen animation
sequences, combinations or variations thereof in a controllable man-
ner. As reference motion, we denote a set of body trajectories as
future control variables that the character shall follow during the
motion generation process.
First we train the motion generator, which is a neural network

that predicts the full body pose from a dense signal of key joint tra-
jectories. The motion generator can learn from unstructured motion
capture data within a compact network, and is able to successfully
reconstruct the large variety of attacking, defending or interaction
behaviors typical of martial arts in a task-agnostic fashion and with
high fidelity, even including stylistic signature movements of differ-
ent fighters. It also functions as a projector to the implicitly learned
motion manifold where the input trajectories are moderated to be
natural in case they are off the motion manifold.

We then utilize a set of independent control modules for different
actions or behaviors from selected subsets of the motion data: Each
controller can be in the form of another neural network, an existing
motion sequence or any other suitable computational framework.
Furthermore, each of them allows for a unique and task-specific
input, but always producing the future motion trajectories going
into a shared control interface. Those trajectories can then be edited,
mixed and layered intuitively by animators, with the effect that once
these modified controls are given as reference motion to the motion
generator, a plausible novel animation will be generated.

With this research, we demonstrate our deep learning framework
helps overcoming the issues of traditional blending and layering
techniques common in games, which suffer from artifacts that vio-
late physics and often break the character pose in unnatural configu-
rations, without requiring changes in the workflows that animators
are used to. We further demonstrate that often careful control signal
design is not necessary to generate a large range of character move-
ments that can generalize to novel and unseen motions, but that
similar results can be achieved by directly utilizing existing motion
trajectories and a set of simple operators to combine or edit those
inside such frameworks. We show our system being able to synthe-
size a large variety of character movements and actions, including
locomotion, punching, kicking, avoiding and character-interactions
in high quality while avoiding intensive manual labour when work-
ing with unstructured large-scale datasets. The contributions of this
paper can be summarized as follows:

• a modular learning framework for animation layering that
enables synthesizing a large set of motion skills, combinations
as well as variations thereof from a motion generator,

• a transparent control interface that allows editing movements
after network training, as well as adding further motion tasks
with less iteration time,

• a collection of control modules to synthesize single-character
movements as well as multi-character close interactions, and

• an evaluation of the framework for different applications in
producing martial arts movements in games.

2 RELATED WORK
In this section, we first review classic motion editing methods as
well as motion synthesis approaches based on motion blending. We
next review methods to control the character using built models
and continue to deep learning approaches that can learn from large
motion capture datasets. Finally, we briefly review recent physics-
based approaches.

Editing Motion Capture Data. Here we review motion editing
techniques based on layering, splicing and optimization. Motion
Layering is an approach to add offsets to the body parameters such
as the joint angles to edit the motion. Layering can be applied to
change the style of the motion [Dontcheva et al. 2003; Ikemoto
et al. 2009; Seol et al. 2013; Witkin and Popovic 1995] and edit the
kinematics to avoid obstacles [Witkin and Popovic 1995]. Learned,
dynamic offsets can produce richer styles that cover a wider range
of motion [Ikemoto et al. 2009; Seol et al. 2013]. Another method
to edit motion capture data is splicing, where the trajectories of
different parts of the body are transplanted between different motion
data to synthesize novel motion [Heck et al. 2006; Ikemoto et al.
2009]. Optimization is another powerful approach for editing human
motion. Techniques to impose kinematic [Gleicher 1997, 1998] and
dynamic constraints [Liu et al. 2005; Liu and Popović 2002] have
been developed to synthesize plausible motions that follow the
instructions of the animator.
Although layering and splicing can be effective techniques to

enrich the dataset, howmuch a simple rule of edits can extrapolate to
a wide variation of motions is unknown: an approach to examine and
moderate the synthesized motion is needed. Similarly, optimization
can impose kinematic and physical plausibility, but the naturalness
of human motion cannot be evaluated only by simple joint angle
limits or physical laws. Our motion generator can project the invalid
motion to the natural motion manifold to convert motions generated
by layering, splicing and optimization.

Motion Synthesis by Interpolation. A simple and widely used me-
thod to generate novel motion from examples is motion blend-
ing [Rose et al. 1998; Wiley and Hahn 1997], a family of techniques
aimed at interpolating multiple animations clips to synthesize new
motion [Huang and Kallmann 2010; Kovar and Gleicher 2003; Wiley
and Hahn 1997]. After aligning the motion along the timeline [Kovar
and Gleicher 2003], novel motions can be synthesized by comput-
ing the blending weights to satisfy spatial constraints [Huang and
Kallmann 2010; Rose III et al. 2001].

Motion blending leads to data-drivenmotion synthesis approaches
that learn from a large set of motion capture data. Classic data-driven
approaches are mostly based on Gaussian processes (GP). Grochow
et al. [2004] learn a latent space by GPLVM and allow to control

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:3

characters in the latent space to satisfy constraints given by the user.
Mukai and Kuriyama [2005] apply GP to learn locomotion and mo-
tion to carry objects. Min and Chai [2012] learn a generative model
for motion synthesis: functional PCA is used to learn within each
motion class and GP is used to learn transitions between motion
classes. GP suffers from scalability issues as its memory requirement
increases in the square order and its computation increases in the
cube order. Methods based on deep learning are developed to cope
with such a limitation. We review such approaches later in this
section.

Character Control. Character control is another fundamental prob-
lem in motion synthesis, for which a series of motion shall be pro-
duced that interactively follows the user-given instructions. One of
the classic ideas to achieve this task is to construct a graph structure
that represents the transitions between different motion clips and
plan motion based on graph search. Such graphs are either manually
crafted [Mizuguchi et al. 2001; Rose et al. 1998] or created automat-
ically [Kovar et al. 2002]. These ideas are combined with motion
blending to synthesize a novel series of motions [Heck and Gleicher
2007; Min and Chai 2012; Safonova and Hodgins 2007; Shin and
Oh 2006]. Once the graph is constructed, the motion to follow the
instruction of the user is computed by short horizon optimization,
such as A* [Safonova and Hodgins 2007], MAP [Min and Chai 2012]
or Reinforcement Learning (RL) [Lee and Lee 2006].
The responsiveness of graph-based approaches is hindered by

the inherent coarse discreteness of the underlying data structure,
which allows transitions only at the end of a motion segment. Lee
et al. [2010b] propose instead to blend and concatenate individual
frames, by compiling the unstructured motion data into a high-
dimensional field of character poses. To cope with the scalability
problem posed by the high-dimensionality, Levine et al. [2012] learn
a policy in a low dimensional latent space constructed by Gaussian
Process Latent Variable Model (GPLVM). Motion matching [Clavet
2016] takes inspiration from [Lee et al. 2010b], but bypasses the
need to train an RL policy, by embedding the locomotion task (in
the form of past and future root trajectory) in the feature vector
used in a 𝑘-NN query that finds what the most appropriate pose for
the next frame is. Embedding the task in the feature vector makes
it difficult to apply this framework to non-locomotion tasks.
Our controller is in the same direction as Motion matching: to

overcome the issue of control signal, we propose a hierarchical
setup, where the high-level controller can be designed according to
the task, while the low-level controller uses a general feature vector
that can be trained with the entire motion database.

Deep Learning HumanMotion. Approaches using deep supervised
learning are advantageous in terms of their scalability: methods for
offline and online motion synthesis have been developed.
For offline motion synthesis, Holden et al. [2016; 2015] learn a

motion manifold by temporal convolution: the learned manifold can
be applied for motion denoising, motion synthesis and stylization.
Aberman et al. [2020] propose an approach for motion style transfer
based on temporal convolution: the system learns from an unpaired
collection of motions with style labels, and enables transferring mo-
tion styles not observed during training. Harvey et al. [2020] propose
an LSTM-based model that learns how to interpolate keyframes.

For online motion synthesis, time-series models that predict the
next pose from the previous pose have been developed. Fragkiadaki
et al. [2015] propose a generative LSTM model that avoids converg-
ing to an average pose by sampling from a distribution represented
by GMM in each frame. Li et al. [2017] apply teacher forcing to
avoid the LSTM converge to an average pose. Lee et al. [2018] apply
a four layer LSTM to learn locomotion and basketball motion.

When animating human motion with time-series models, the sys-
tem must cope with the ambiguity problem: a simple inference by a
deep network can result in an over-smoothedmotion or convergence
to an averaged pose. A system which imposes more conditions, or a
generative framework is needed to resolve the ambiguity. Holden
et al. [2017] propose Phase-Functioned Neural Network (PFNN)
that conditions the outputs to the locomotion phase: the phase is
fed to a gating network that outputs the weights of the main net-
work. Zhang et al. [2018] use a similar structure but inputs the feet
velocity of quadrupeds to the gating network. Starke et al. [2019]
expand the task to interaction with objects and environment. Starke
et al. [2020] automatically extract local motion phase signals from
the main joints of the skeleton, enabling to cover asynchronous
motion, where a global phase signal would typically fail. Henter et
al. [2020] propose to solve the ambiguity issue by using a stochas-
tic generative model based on normalizing flow, called MoGlow:
while deterministic models naturally average outputs that map to
the same under-specified input, stochastic systems will present a
different, sharper response with every inference.
One drawback common to deep learning-based approaches is

the long training time necessary to train such models: this severely
hinders the acceptance into a development cycle of games that relies
on constant fast iterations. Holden et al. [2020] aims at removing this
point of friction, proposing a framework that can compile a tuned,
mature motion matching system into a compact, deep learning
based model. One drawback of this design choice is naturally the
incapacity to generalize to motion outside the training data. Ling
et al. [2020] also decouple control and motion synthesis, modelling
the motion manifold with a conditional VAE, and deferring control
to Reinforcement Learning, where the action space is the Gaussian
noise in input to the VAE. Inspired by such approaches, we also
propose a modularized framework that allows separate training of
the control modules and allows for generalization.

Physics-based Motion Synthesis. A different approach to character
motion synthesis is to explicitly model the dynamics of motion with
physics, shifting the action space to that of joint torques [Coros et al.
2010; De Lasa et al. 2010; Hodgins et al. 1995; Lee et al. 2010a; Yin
et al. 2007] or muscles [Geijtenbeek et al. 2013]. Recent work has
been tackling the problem of learning control policies for physically
based motion using Deep Reinforcement Learning, purely proce-
durally [Brockman et al. 2016; Heess et al. 2017; Jiang et al. 2019;
Lee et al. 2019; Yu et al. 2018], or with the aid of existing motion
data through imitation tasks [Bergamin et al. 2019; Park et al. 2019;
Peng et al. 2018, 2017; Won and Lee 2019], and many others. While
our model is fully kinematic, it can potentially be applied as target
movements of imitation-based methods.

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

92:4 • Starke et al.

Fig. 2. Our deep learning framework imitates animation layering: It first learns the entire motion manifold from unstructured data from the character
motion trajectories in the motion generator, which is in the form of a mixture-of-experts network. Several control modules then generate the future motion
trajectories for different active behaviors. Those trajectories are then layered by additive, override or blending operations in the control interface, before given
to the motion generator to generate a novel full-pose pose. Given the current character state, the motion is predicted from one frame into the next.

3 SYSTEM OVERVIEW
Our deep learning framework is a time-series system that predicts
the character pose from one frame into the next in an autoregressive
fashion, where layering and motion progression is done at one step,
and aims to decouple themotion generation process from the control
process.
First, using a large motion capture data set of a human body

model that is composed of 24 body segments, we implicitly learn
the distribution of all unstructured motion capture data with the
motion generator network (see Fig. 2, 4th column), which is both
able to accurately reproduce the original animation and general-
ize to novel, unseen states. This network is trained to produce a
character pose that follows a subset of motion trajectories, with
the effect of encoding the entire data into a compact network in a
task-agnostic manner. First, it projects unnatural trajectories to the
motion manifold, which has the effect of filtering out unrealistic
poses, allowing for sketched user inputs. Second, it enables motion
interpolation for novel control inputs, such as when providing a
mixed or edited set of motion trajectories from layering operations.
After the motion generator is trained, different control modules

(see Fig. 2, 2nd column) can be independently created from different
subsets of the data to purposely drive the motion synthesis. These
can be in the form of neural networks, heuristic-based controllers,
existing reference motion clips, or user-driven editors, with one
shared property: each of them producing the future trajectories of
the key joints.

The future trajectories of the key joints are fed to a common con-
trol interface (see Fig. 2, 3rd column). This intermediate interface
provides a control scheme for artists to layer, blend and edit the
character movement as desired. Afterwards, when the new trajec-
tories are given to the motion generator network, a novel unseen
animation can be generated from the entire motion manifold. Since
the motion generator does not have to be retrained when adding
or changing the controllers, our framework reduces iteration times
during development and allows shifting the process of tuning the
motion generation from before-to-after network training.

In the following, we will first describe the motion generator net-
work in Section 4, next discuss a list of control modules that we
use to produce different motion behaviors in Section 5, and then
explain the control interface that connects those components to
interactively synthesize martial arts movements in Section 6.

4 MOTION GENERATOR
The motion generator uses a mixture-of-experts scheme similar
to [Starke et al. 2020; Zhang et al. 2018], and consists of a gating
network and a pose predictor network. The pose predictor net-
work is constructed by blending the weights of a fixed number of
structurally identical networks, called experts, according to a set
of learned blending weights (see Section 7 for the details of the
architecture). It takes the trajectories of the key joints, which we
denote here as control series, to guide the motion, plus the pose data
of the current frame as the inputs, and outputs the character pose
for the next frame. The control series C𝑖 is sampled within a time
window T 1𝑠

−1𝑠 = 13, and is defined as follows:

C𝑖 = {C𝑖,1, ...,C𝑖,𝐿} = {T𝑖 ,M𝑖,1, ...,M𝑖,𝑁 }, (1)

where T𝑖 is the root joint trajectory in 2D space andM𝑖, 𝑗=1,...,𝑁 is
a set of 𝑁 = 11 key joint trajectories in 3D space among the 24
body segments of the character, each covering a window of one
second in both past and future around frame 𝑖 . Thus, in our setup
the control series has 𝐿 = 𝑁 + 1 channels in total to be mixed
or modified by layering operators. The key joints include the hip,
left/right upper/lower leg, left/right upper/lower arm, spine, and
head (see Fig. 2). The root trajectory T𝑖 defines the horizontal path of
trajectory positions T𝑝

𝑖+1 ∈ R2T , trajectory directions T𝑟
𝑖+1 ∈ R2T ,

trajectory velocities T𝑣
𝑖+1 ∈ R2T , integrated lengths T𝑙

𝑖+1 ∈ RT and
integrated angles T𝑎

𝑖+1 ∈ RT . The motion trajectories are a series
of 3D transformations and velocity for each of 𝑁 = 11 key joints,
represented by position M𝑝

𝑖+1, 𝑗 ∈ R3T , forward and up direction
M𝑟
𝑖+1, 𝑗 ∈ R

6T and velocity M𝑣
𝑖+1, 𝑗 ∈ R

3T .

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:5

The gating network takes in input g𝑖 ∈ RT𝑁 , which are the
velocity magnitudes of the future joint trajectories in the window
T 1𝑠
0𝑠 = 7, and outputs the blending weights 𝐵 that dictate the in-
fluence of each expert. The motivation to choose the gating input
like this is with the aim to segment the motion based on the low
and high-frequency joint movements, such that the network can
cover a wide range of motion data well. See Section 9.9 on how the
gating structure helps segmenting the movements via blending the
network weights.
Structurally, the motion generatorM maps the current pose at

frame 𝑖 and control series of frame 𝑖 + 1 to the body pose and finger
transformations, and contact states between the end effectors and
the ground at frame 𝑖 + 1:

M(C𝑖+1, P𝑖) → (P𝑖+1, F𝑖+1, c𝑖+1,ΔR𝑖) (2)

where P𝑖 = {p𝑖 , r𝑖 , v𝑖 } is the pose at frame 𝑖 composed of the joint
positions p𝑖 defined in the root of the body, joint rotations r𝑖 rep-
resented in the form of two co-orthogonal axes of each body seg-
ments [Zhang et al. 2018], and the joint velocities v𝑖 also defined in
the root coordinates of the body, F𝑖 are additionally reconstructed
finger transformations, similarly consisting of position, rotation and
velocity pairs, c𝑖 are binary contact switches for the end effectors
of feet and hands, and ΔR𝑖 is the root update containing a 2D offset
vector in the horizontal XZ-plane and a 1D rotation angle around
the Y-axis. Predicting the finger transformations can be used for
producing tight fists when punching, open hands during locomo-
tion, or for grasping poses when holding the opponent. The contact
switches are later used to correct the end effector positions when
they are supporting the body.

In effect, the motion generator can be trained on very large-scale
datasets covering different motion skills and behaviors, without re-
quiring manual supervision. The joint trajectories practically show
to mitigate ambiguity in the input, effectively compressing several
gigabytes of motion captured data into a model that can both repro-
duce very specific motion and synthesize animations that are not
present in the training data (see Section 9.7 and 9.8). After training
the network, editing, blending as well as layering joint trajectories
as control to the motion generator, instead of carrying similar op-
eration directly on the animation data, demonstrates significant
advantages: since the motion generator essentially learns the mani-
fold of plausible motion from the training data, it acts as a projection
operator on said manifold, avoiding unrealistic poses and jerkiness
in the motion, and generalizes to novel movements and transitions
between them by following the given reference trajectories.

5 CONTROL MODULES
The purpose of the control modules in the proposed framework is
to represent a specific behavior B that outputs future control tra-
jectories to be followed by the character. As mentioned in previous
sections, any scheme that adheres to this common interface can be
used: control modules can be in form of neural networks, physics-
based simulations, motion matching, animation clips or user-driven
tools that enable editing the trajectories themselves directly. Our
framework makes it easy to swap or even combine higher-level con-
trol modules to focus on different tasks, where each control module
can define its very own inputs if necessary, but adheres to the same

Fig. 3. The redirected control learns the motion of one character in the
redirected root space of the other to align movements in runtime of different
configuration than during training.

interface of returning a set of future motion trajectories as reference
to be followed by the motion generator. Structurally, the function
for the control modules can be formulated as

B𝑘 (·) → Ĉ𝑘𝑖+1 𝑘 ∈ 1, ..., 𝐾, (3)

where each controller B𝑘 (·) for behavior 𝑘 maps its input to a
future control series Ĉ𝑘

𝑖+1 of the next frame. Their combination by
different layering techniques is performed by the control interface
as discussed in Section 6. We now describe the purpose of each
behavior controller, whereas the detailed specifications about their
inputs and outputs can be found in the appendix Section A.

Idling. In order to produce idling animations when the character
is standing still, we take a small set of reference motions extracted
from existing animation clips that are characteristic for each fighter,
and extract their key joint trajectories and use them as the con-
trol series. Furthermore, such idle motions can be modified into
variations via additive layering using an offset vector (see Fig. 10,
middle row). We find this simple setup easy to use; we can also ran-
domly switch between different reference clips and obtain smooth
transitions between them.

Locomotion. Locomotion is generated by training another neural
network similar to the work in [Starke et al. 2020] by using local
phase variables (one for each foot). However, instead of directly
producing the output pose, we predict the future control series of
the locomotion that will be combined with other behaviors in the
control interface. With that we can synthesize unseen combinations
of locomotion with actions like blocking and punching movements.

Attacking and Targeting. For attacking, there are two aspects that
we need to consider: one is to edit the motion with layering and the
other is to enable the attacker to face the opponent and land the
attacks on the opponent’s body even when the opponent is dynami-
cally moving. Layering the attacking motion is done in a fashion
similar to the idle behavior, by selecting a short reference sequence
from the data: this way, we provide animators with intuitive control
over the initial appearance of a fighting skill. Afterwards, we can
combine and modify different attacking behaviors using our control
interface to synthesize double-punches and natural kick-and-punch
sequences of different timings which are not included in the original
training data.

For targeting an opponent, we use a dataset of two fighters facing
and fighting with each other to train a Redirected Control control

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

92:6 • Starke et al.

module (see Fig. 3 and Fig. 13) that learns how to modify a given
reference motion relative to an opponent in order to land an attack.
In this scheme, the system learns how the attacker’s body joints
should move with respect to the opponent; we then map the pre-
dicted motion back to the space of the attacker. This idea is similar
to the goal-directed scheme proposed in [Starke et al. 2019], but
further applied to motion trajectories of character joints instead of
only considering the root trajectory.

Essentially, we define a redirected space 𝑇𝐴
𝐵

between character A
and its opponent B by computing an aligned root direction from B’s
root position to A’s root position: the origin of the space𝑇𝐴

𝐵
is given

by 𝑂𝐵 , which is the root position of the opponent B. The forward
direction of 𝑇𝐴

𝐵
is then defined as 𝑧𝑇𝐴

𝐵
=

𝑂𝐴−𝑂𝐵

∥𝑂𝐴−𝑂𝐵 ∥ where 𝑂𝐴 is the
root position of character A and its up direction 𝑦𝑇𝐴

𝐵
being vertical

to the ground plane.
The control module for targeting is then trained as another net-

work that transforms current control series in the root space 𝑇𝐴 of
character A (blue lines in Fig. 3) into the redirected root space 𝑇𝐴

𝐵
of the opponent B (green lines in Fig. 3). As the control module is
trained with a dataset of two fighters fighting, the output motions
are biased such that the attacks land to opponent B. During run-
time, the output control series are transformed back to character
A’s space, so that they target towards opponent B. In effect, learning
trajectories in this space enables the network to redirect a given
control depending on the configuration between both characters
in order to match the current runtime situation, and effectively
bypasses misalignment between training and inference (see Fig. 13).

Hit Reactions and Avoidance. To synthesize hit reaction behaviors,
we did not have paired-up data inside our motion capture. There-
fore, extracting a dense signal in order to learn a reaction over a
longer time-window, such as getting hit and stumbling back be-
fore recovering, may be challenging. Therefore, we utilize a nearest
neighbor search via motion matching that finds the best motion clip
for an incoming velocity vector and position between two impacting
body regions [Shum et al. 2008]. Afterwards, we modify the root
trajectory via additive layering to adjust the stumbling direction of
the hit reaction before reconstructing the animation by the motion
generator. Conversely, when controlling the character to avoid an
attack, we train another network that takes as input the entire con-
trol series of the opponent, and from that learns to produce suitable
future trajectories for the own character. To connect two characters
and make them responsive to the motion of the opponent, the same
concept of redirected control is used. Here, we predict the trajec-
tories of character A’ avoidance reaction motion in the redirected
space 𝑇𝐴

𝐵
. From that, the avoiding movement changes depending

on the relative location of both characters as well as based on the
attacking action being performed (see Fig. 13).

Clinching and Carrying. To produce close-interaction movements
such as clinching and carrying, we train another control module
that generates the motion trajectories of the character. Consider-
ing we have a submissive fighter that is controlled by a dominant
opponent, we first select a motion clip for the latter. Then, we can
interactively modify its motion trajectories by additive layering, for
example to create pulling or pushing variations. The network takes

Fig. 4. Learned spatial constraints as contact matrix and relative vector
pairs for close-interaction movements between two characters, showing
8 joint pairs as example (left). In our setup, the character mesh with 24
bones is approximated by a set of 16 primitive shape colliders to detect body
contacts (right).

as input the modified curves of the dominant fighter and, given the
current pose, produces its own future motion trajectories of the
submissive fighter. In addition, since we wish to maintain sharp
contacts during the interaction when the movements are edited. For
that, we further output a Constraint Matrix that consists of multiple
4D-vectors between each pair of character bones of the interacting
characters (see Fig. 4). Those information are extracted from the
motion data and contain information about the contact labels and
relative vectors between the interacting joints, and are learned in-
side their respective joint space of the dominant fighter [Al-Asqhar
et al. 2013]. Similar to the redirected control, the constraint matrix
is inspired by the goal-directed control in [Starke et al. 2019], but
additionally operates on joint trajectories and includes additional
pairwise contact information, which allows producing the required
features to help resolving an interaction motion via inverse kine-
matics. At runtime, we use the predicted contact labels to select
which constraints need to be resolved, and also use them as weights
for the solver to satisfy the back-transformed target positions from
the opponent space. More details and results can be found in Fig. 14.

6 CONTROL INTERFACE
The purpose of the control interface is to perform editing and com-
bining of multiple task-specific motion trajectories into a single
and novel control series before given to the motion generator. More
specifically, all generated future control trajectories produced by the
control modules pass through the shared control interface, where
they can be mixed via override, additive or blending layering (see
Fig. 5) by the animator after network training. The layer masks to
modify different joint channels can be changed dynamically during
inference by the animator to modify the motion appearance with
low iteration time. This enables producing novel combinations and
variations of separate motion skills on a control-level and generat-
ing the final pose by the motion generator, instead of performing
the said operations directly on a pose-level. Structurally, the task of
the control interface is to compute a combined future control series
by a layering operator L that can be denoted as follows:

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:7

Ĉ𝑖+1 = L(Ĉ1
𝑖+1, ..., Ĉ

𝐾
𝑖+1), (4)

where (Ĉ1
𝑖+1, ..., Ĉ

𝐾
𝑖+1) are the 𝐾 control series which are combined

to produce a new control series.
The override layering operator (see Fig. 5, top) can be described

as mixing curve channels from different control series into one. For
example, this can be selecting the lower body curves from a walking
or kicking behavior with the upper body curves from a punching or
blocking behavior (see Fig. 8 for more information). This operation
can be defined as follows:

L𝑂 : Ĉ𝑖+1 = {Ĉ𝑠1
𝑖+1,1, ..., Ĉ

𝑠𝐿
𝑖+1,𝐿} (5)

where 𝑠1,...,𝐿 are the channels selected from control series {1, ..., 𝐾}
for producing the final control series.
The additive layering function (see Fig. 5, middle) modifies the

current control series by an additional signal for a set of selected
channels. This signal can be in the form of a scalar to adjust speed or
distance, a vector to control position or direction, an entire control
series or another customized function:

L𝐴 : Ĉ𝑖+1 = Ĉ𝑖+1 + {𝛼1T, 𝛼2M1, ..., 𝛼𝐿M𝑁 } (6)

where 𝛼1, ..., 𝛼𝐿 ∈ {0, 1} are parameters that specify if the layering
happens for each channel.

Lastly, a blending operation (see Fig. 5, bottom) can be performed
to transition from a current control series into another new control
series:

L𝐵 : Ĉ𝑖+1 = (1 − 𝑡)Ĉ𝑖 + 𝑡Ĉ𝑖+1
𝑡 ∈ [0, 1] .

(7)

Using these three operators enables our framework to synthesize
a large variety of combinations and variations of different motion
skills in an intuitive manner.

7 NETWORK TRAINING
The training is done by normalizing the input and the output of
the entire dataset by their mean and standard deviation and first
training the motion generator. Afterwards, we can utilize different

Fig. 5. Override, additive, blending layering of multiple control series.

Fig. 6. Gamepad controls exposed to the user to interactively launch
different fighting actions and motion behaviors on the character.

techniques such as described in Section 5 to produce the inputs
to the motion generator for synthesizing novel movements. In our
setup, we train the control modules for locomotion, targeting, avoid-
ance and close-interactions separately as different task behaviors.
Our data contains a large variety of martial arts movements, in-
cluding signature movements of different fighters, and interaction
movements. Since the original data contains only one character per
clip, we pair up sequences for close-interaction movements. All data
processing and export is performed in Unity, while the networks
are implemented in TensorFlow. To train each network, we use the
same architecture but different inputs/outputs (see Section A for
the details), and we use the AdamWR optimizer with warm restart,
similar to [Zhang et al. 2018]. The learning rate is initialized with a
value of 1.0 · 10−4 and later adjusted by the weight decay rate with
the initial value of 2.5 · 10−3. Dropout rate is set to 0.3, hidden layer
size in the gating network is set to 128 and in the pose prediction
network to 512 respectively using 8 sets of expert network weights.
Both the gating and pose prediction network have 2 hidden layers
and use the ELU activation function. The motion dataset is taken
from legacy fighting game animations collected via motion cap-
ture of professional actors. Our complete dataset consists of ∼20h
(∼70GB) motion data, and is not augmented with any handcrafted
labels for actions, styles or goal variables. For training the motion
generator network, no manual supervision or selection of motion
files was required. For creating the control modules, only those clips
relevant for the specific actions needed to be inspected and were
included one after another. Thus, in our setup, the motion generator
was trained on significantly more actions and behaviors than finally
covered by our set of control modules, but without losing quality on
their respective tasks. The complete dataset is doubled by mirroring,
downsampled from 60Hz capture to 30Hz, and then exported twice
by shifting the data by one frame. After training, the data is com-
pressed from ∼300GB generated training data (70GB source data)
to ∼46MB network weights. Training the motion generator on the
entire dataset can take up to one month. Creating a control module
takes between a few minutes to a few days, depending on whether
it requires selecting set of specific reference animation clip, building
a motion matching database to cover a range of movements, or
training a neural network on a particular motion task. In addition,
the reference motion trajectories, such as for different attacking,
idling or hit reaction sequences, were stored in a small database
with a total of ∼11MB.

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

92:8 • Starke et al.

8 CHARACTER CONTROL SYSTEM
The character is controlled by a gamepad’s joysticks and buttons
(see Fig. 6) to offer a wide range of control signals to the user. The
mapping between the user input to the actions is designed as follows:
The translation and rotation motion is driven by the left joystick;
when the joystick is simply tilted, the character moves to the direc-
tion without changing the orientation. When the joystick is rolled,
its rotation is integrated overtime and the character turns its facing
direction. When the joystick is pressed, the character sprints. The A
and X buttons are assigned to launch regular punching or kicking
attacks from a small database. The B and Y buttons are assigned to
trigger a signaturemotion or to attempt avoiding an incoming attack.
The left and right trigger buttons are used to performmore advanced
attacking behaviors. Launching multiple behaviors at the same time
causes the movements to become combined via override layering in
the control interface: For each motion behavior or selected reference
clip, layers have been assigned to the motion channels to represent
their importance (i.e. the punching movements have a higher layer
assigned to the arm joints and the kicking movements for the legs
respectively). Those layers are defined manually beforehand by the
animator to specify which subsets of joint trajectories are prioritized
when mixing them in the control interface, and can be changed as
desired or dynamically via code logic. Furthermore, by using the
right joystick, the user can control a vector that is additively layered
to transform the current motion trajectories, where the channels are
similarly selected by the user or via code logic. All curve channels
are combined via lerp and slerp operations for position, rotation
and velocity respectively.

9 EXPERIMENTS AND EVALUATION
This section shows a number of results that can be realized by
our system for synthesizing, combining and modifying different

Fig. 7. A selection of movements that can be synthesized by our system.

martial arts movements, followed by a quantitative evaluation about
reconstruction quality as well as generalization capacity of the
motion generator. Our animation system is implemented in the
Unity engine, and the neural network is queried through a socket
interface to compute the character movements. We conduct our
experiments using an AlienwareM15 R2 laptop with Intel i9-9980HK
processing cores and a NVIDIA GeForce RTX2080 GPU. The system
requires about 8ms per frame for each character including user
control processing, inference time and scene rendering. We run the
animation at 30Hz framerate. The following sections are best to
follow in combination with the supplementary video material.

9.1 Animated Results
A selection of animated results showing the characters perform-
ing different motion skills is shown in Fig. 7. TheWalk Punch was
produced by layering generated locomotion curves with those of
a selected punching sequence. Modifying a kicking reference mo-
tion by a negative height offset generated the Low Kick animation.
Starting from an unseen pose on the ground, a natural transition
for an unaligned Get Up reference motion could be synthesized. By
learning from the motion trajectories of an attacking opponent, the
network can produce a suitable Avoidance motion. Lastly, using the
learned spatial constraints enabled to accurately reconstruct Carry-
ing and Clinching movements between two interacting characters.
We will elaborate more on each of those examples in the following
subsections.

9.2 Override Motion Layering
In this section, we demonstrate our system being able to combine
movements from different motion skills via override layering into
a new animation while maintaining the context of the original
movements. In Fig. 8, we use two significantly different movements
for a character doing a flying-kick (left) and a strong punchwith both
feet planted on the ground (right). From that, we wish to generate a

Fig. 8. An example of combining two distinct animations of a flying-kick
and an upper-punch via override layering using our system.

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:9

Fig. 9. A selection of results using our method to combine different motions
into a combined animation using override layering.

novel animation that combines the motion of the kicking character
with the left arm and leg of the punching character (highlighted in
cyan). Due to the significant difference between both movements,
commonly applied layering techniques using either joint angles or
inverse kinematics lead to unnatural poses or self-collisions in the
resulting movements. Using our technique by simply copying the
joint trajectories of the selected channels, we can produce a novel
and realistic combined animation with minimal effort.
We show more of such examples in Fig. 9, combining punching

and avoiding into a counter attack (top), performing a strike while
walking (middle), or doing an uppercut while blocking with the
other hand (bottom). Our method reliably produces believable re-
sults that do not require additional cleanup to resolve self-collisions
or joint limit violations. We further found the quality of the gener-
ated motion is not sensitive to time-alignment: for example, while
layering a kick and a punch, shifting the start of the punch anima-
tion at different frames generates variations in the final animation
that still appear believable. All generated movements do not exist
as such combinations in the original training data.

9.3 Additive Motion Layering
In this section, we demonstrate our system being able to generate a
variation of movements from a single reference motion and simple
user control via additive layering.Modifying a particularmotion into
similar ones is particularly important for game situations where the
user wants to perform a particular action with different conditions,
for example doing a specific punch in different direction or speed. In
Fig. 10, a target vector that is interactively controlled by the user is
added to a selected set of joint trajectories (highlighted in magenta)
as additional offset to cause a continuous range of motion variations.
First, given the generated locomotion curves, we can modify them
to cause the character do crouching (see top left) or performing a
side-step with one leg (see top right). Second, given an idle reference,
we can produce a defending (see middle left) or taunting behavior
(see middle right) by editing the curves into different directions.
Lastly, using a punching reference, the action can be edited to target

Fig. 10. Modifying the reference trajectories via additive layering allows
synthesizing a variety of similar movements by our network. The vector
shows the offset that is added to a set of selected motion curves and causes
the body pose to be modified into that direction.

different directions (see bottom left and right) while automatically
adjusting the full-body pose of the remaining body. Particularly
such attacking variations are not included in our original dataset,
but only exist in a very sparse manner. This demonstrates how our
motion generator is not only able to reconstruct the animations from
a compact network, but also to sample between different motion
categories by editing through the control interface.

9.4 Transition Motion Synthesis
Synthesizing transitionmovements between twomotion clips can be
very challenging when the start and end poses are not aligned with
each other. Usually, this requires a lot of tweaking, manual work and
experience to avoid artifacts in the motion synthesis, particularly
in terms of foot sliding. In Fig. 11, we demonstrate such an example
where a pose with the right foot forward shall be transitioned into
an attacking behavior with the left foot forward. Using spherical
linear interpolation, we can observe the foot sliding above ground to
perform the punch. Using our framework, the character instead will
perform a quick switch of the contacting feet in order to transition
to the following motion. Furthermore, we found this technique
similarly robust like in the override layering examples when the
timing of movements changes, which makes it practical to apply to
unstructured datasets and producing realistic transitions between
unaligned motion clips.

9.5 Signature Movements
A common question that rises among animators when using neural
networks for motion generation is whether the system is able to
synthesize signature movements, such as stylistic attacking behav-
iors of different fighters in martial arts. First, is the system generally
able to encode and reconstruct the detailed motion nuances of such

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

92:10 • Starke et al.

Fig. 11. Transitioning from one clip into another with different pose timings.

behaviors, and second, how can we then control and synthesize
such animations after network training? In Fig. 12, we demonstrate
our framework reconstruct a flying spin kick (top left), crane kick
(top middle), and overhand strike (top right) from given reference
curves. Below, we visualize the pairs of original and reconstructed
end effector trajectories for hands in feet. Such movements can be
difficult to learn since there are not many samples available and
the movements often appear very fast. Since the animations are
all jointly trained inside the network, we can again apply additive
layering to edit the motion similar to Section 9.3 after training, and
also obtain realistic transitions from unaligned clips as in Section 9.4.
A more quantitative evaluation on tracking accuracy in comparison
to other network architectures is shown in Table 1.

Fig. 12. Reconstruction of different signature movements (top row) with
pairs of original and reconstructed joint trajectories (middle row). Each color
corresponds to one end effector for hands and feet. Additively layering an
offset curve to the motion trajectories enables the animator to modify the
produced animation sequence by the motion generator (bottom row).

9.6 Character Interactions
Next, synthesizing character interactions in martial arts pose many
challenges since the spatial relationships between two characters
need to be maintained when interactively controlling the move-
ments. More specifically, a character can be in an unseen state in
the game that was not captured inside the data, but a feasible action
shall still be performed successfully. For example, in Fig. 13,top we
demonstrate a kicking action launched at a starting pose that is not
matching the one captured in the data, and therefore would miss
the enemy if simply played back (top left). Using our learned control
redirection, a reference motion is correctly modified to successfully
hit the opponent (top middle) and causing a hit reaction (top right).
Using the impact velocity, the reaction is synthesized by first search-
ing for a suitable reference clip via motion matching within a small
database to extract the initial reference trajectories, and then refin-
ing those by additively layering the impact velocity vector to better
match the game situation. The adjusted motion curves are then
fed into the motion generator to generate a plausible animation.
If the opponent is controlled to instead avoid an incoming attack,
Fig. 13 bottom also demonstrates how another control module in
the form of a neural network can learn from different opponent
motions to produce required future trajectories to synthesize a suit-
able avoidance animation. If the attacker performs a lower kick, a
stepping-back movement will be generated (bottom left), whereas a
spinning-punch causes the enemy the lean back (bottom middle) or
crouch (bottom right) depending on the location.

When performing close-character interactions, such as clinching
or carrying an opponent, particularly the contacts of interacting
joints need to remain stable when the motion is controlled by the
user. Typically, using inverse kinematics can achieve the motion to
remain cohesive after editing, but easily leads to unnatural pose con-
figurations between the joint offsets of the two characters. In Fig. 14,
we demonstrate our system being able to accurately reconstruct
examples of such close-character interactions (top) by learning the
constraint matrix from the character movements (middle). The user
can then edit the motion curves as desired and produce novel poses

Fig. 13. The top row shows our learned control redirection to achieve
hitting an opponent in an unseen game state that was not captured inside
the training data. In the bottom row, different attacking behaviors and
relative locations result in different avoidance behaviors.

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:11

Fig. 14. Synthesized close-interaction examples with learned constraint
matrix and pose adjustments controlled by the user. Using additive layering,
the original clinching motion can be modified to produce a pushing behavior
depending on the offset strength.

that appear natural while maintaining the contacts between inter-
acting joints. In particular, Fig. 15 showcases the effect of resolving
the motion by the learned constraint matrix and relative vectors
between interacting joint pairs. It can be observed that the con-
straints along with the motion as well as finger configurations are
accurately predicted and produce sharp close-interaction behaviors
(left), whereas not using them leads to consistent body penetrations
and blurry movements (right).

9.7 ReconstructionQuality
In this section, we evaluate how well the trained motion generator
is able to fit a large variety of different movements from more than
300GB of unstructured motion capture data. We consider this a
relevant study since it investigates what variety of animations we
are able to encode into a shared motion manifold, and that can
later be sampled from by given reference motions without requiring
retraining. In Table 1, we measure the average error in position and
rotation when following a given reference motion that has been seen
during training. It can be seen that when using the gating structure,

Fig. 15. Using the learned spatial constraints enables the system to main-
tain cohesive contacts between two interacting characters.

Table 1. Average difference in position and rotation for following references
motions inside the training set.

Model MoE LSTM MLP
Deviation cm deg cm deg cm deg
Total 4.8 11.1 7.9 16.5 9.1 18.4
Locomotion 5.2 8.3 5.6 9.4 8.6 13.2
Punch 3.7 11.3 5.9 14.3 7.1 16.7
Kick 4.5 11.7 8.6 16.2 9.3 18.6
Interaction 4.1 9.4 4.5 11.6 6.9 15.8
Signature 6.1 13.6 14.7 31.1 12.6 24.4
Miscellaneous 5.7 12.5 8.2 16.5 10.3 21.9

the error is consistently lowest across all tested motion categories.
In particular we observed the model to help reconstructing the high-
frequency components of motion, which achieve segmenting the
animations based on the future velocity magnitudes. Without that,
both LSTM and MLP architectures tend to produce more blurry
results with less accuracy while tracking the targets, especially
during fast movements and quick character rotations. Particularly
for LSTM, signature movements tend to be modelled rather poorly.
This could be due to the latent variables focusing more on the past
of the motion, and can not respond well to very agile movements in
the given future controls.

9.8 Generalization Capacity
We are now evaluating the motion generator when applied to re-
construct movements that have not been part of the training set.
For that, we separate the reference motions into three categories,
covering motions that are within, between, and outside the trained
distributions, and again capture the average tracking error. Exam-
ples of such can be seen in Fig. 16:

• Within are considered movements like regular kicks, punches
or stylized locomotion that are similar but different to those
in the training data.

• Between are motion skills that combine different actions and
do not exist as such in the training data, such as punching dur-
ing a ground fight, whereas the network has only seen falling
down/getting up movements and punching while standing.

• Outside describes animations that are unique character poses
never seen during training, such as a character sitting on the
ground, doing push-ups or similar.

Results across a large number of such examples are listed in Table 2,
and show that movements within the distribution (see Fig. 16, left),
can be reconstructed with an accuracy close to the tested ground
truth examples in Table 1. Novel movements between two differ-
ent motion skills can also be followed well and appear natural, but
are likely to produce some tracking errors for fast moving joints
(see Fig. 16, middle). Lastly, for poses outside the distribution (see
Fig. 16, right), we observed that the context of the reconstructed mo-
tions typically appears similar, but visible artifacts such as missing
contacts that invalidate a pose may appear. Although this can be
considered a failure example, it demonstrates the network aiming
to project back to a pose manifold that has been covered in the

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

92:12 • Starke et al.

Table 2. Average difference in position and rotation for following unseen
reference motions outside the training set or combined sequences.

Distribution Within-Class Between-Class Outside-Class
cm 5.1 6.7 9.8
deg 11.8 13.2 18.0

Fig. 16. Generalization capacity of the motion generator to fit different
movement distributions outside the training set. The ground truth character
is shown in magenta and the reconstructed character in cyan.

original data, which ultimately enables us to robustly perform ani-
mation layering within a deep learning framework by using simple
operations.

9.9 Learned Network Weights
In this experiment, we investigated the learned network parameters
for different motion skills and how they change when combining
these movements into one. In Fig. 17, we visualize the produced
blending parameters from the gating network for walking, punch-
ing, and the combined animations. Next to it, we show the computed
weights in the first hidden layer of our motion generator network
from blending the experts. It can be observed that characteristic
patterns in the gating weights for walking and punching are re-
sembled in the combined action. Particularly for a punch that is
a fast movement within a short time window, we can observe a
peak in the generated weights that is maintained to reconstruct that
motion. We experienced a similar behavior also for combining other
motion skills, which could indicate that the experts become tuned

Fig. 17. The gating weights and first hidden weights in the motion genera-
tor for different motion skills and after combination.

for specific movements of separate motion trajectories. In turn, this
would suggest our mixture-of-experts framework being a suitable
method for implementing animation layering with neural networks.

10 DISCUSSIONS
Generally, we found our system being reliable and easy-to-use for
generating a large variety of different movements from a small set
of reference trajectories or generated ones. In the following, we
want to discuss a few thoughts that we believe may be of interest
to the reader:

Since we are partially reusing ground truth data, how does our sys-
tem compare to motion matching and learned motion matching? In
our framework, we are fusing the controllability aspect of using ref-
erence clips with the generalization capabilities of neural networks
to synthesize unseen motions that may be hard to achieve with
existing techniques. Particularly for motion matching, returning
animations outside the data is not feasible. This is also the case for
learned motion matching [Holden et al. 2020], which compiles a
finished motion matching setup into a compact model, and prevents
alternation of the generated movements after training by intended
overfitting. Instead, for our framework, we found motion matching
to be a suitable tool if used as a control module to return the refer-
ence trajectories, and with that to enhance motion matching with
generalization capabilities using our motion generator.

Why is the mixture-of-experts architecture suitable for learning an-
imation layering compared to MLP or LSTM architectures? Blending
the weights instead of the outputs in a mixture-of-experts frame-
work achieves a clustering of the learning spaces. For animation,
this means that each set of network weights only has to focus on
a small subset of similar movements. Considering this, we see two
main advantages of using the expert framework over MLP or LSTM
systems: First, it is important that the network is responsive to
quickly changing inputs. Therefore, by using features from the fu-
ture control series to condition the gating network, we can achieve
our motion generator following those signals well. Second, using
those trajectories, the gating network will learn different local body
movements inside different experts (see Fig. 17), which helps to
better construct unseen movement combinations by mixing a set of
experts into a novel set of network weights. Furthermore, a phase
is not needed in the motion generator as the purpose of a phase is
to disambiguate as well as help progressing the motion. In our case,
the trajectories can already be seen as handling this issue, and for
locomotion a phase is instead embedded in the higher-level control
module.

Which limitations of previous works can our method overcome? In
previous character control research [Holden et al. 2017; Starke et al.
2019, 2020; Zhang et al. 2018], a predefined set of control features
is baked into the networks to control the character movements. In
effect, the networks will only generalize the distributions of mo-
tion skills that have been addressed by some higher-level features,
often requiring a lot of experience for the engineer as well as en-
tire retraining once the setup changes. Particularly combining or
modifying those features by the animator after network training
can be difficult, requires clever code-logic to estimate the future

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:13

signals, and sometimes lead to unexpected results. In our system,
those control signals in the form of trajectories can directly be used,
transparently modified without the need of retraining, and achieve
a similar effect in generalizing to an even larger range of unseen
movements. Ling et al. [2020] achieves as well separation of motion
model and control, by explicitly learning the distribution of motion
with a VAE, leaving the control to a RL policy that manipulates the
latent variable in input to the decoder. One limitation of using a
VAE, as noted in [Henter et al. 2020], is the assumption that the
motion distribution is Gaussian. Furthermore RL policies can be
hard to train and they are sensitive to the expressiveness of the
underlying VAE. Compared to the generative control scheme in
Starke et al.[2020] which injects a random latent vector to cause
movement variations, in our system we can add such variation to
the trajectories, achieving better guidance over the final appearance
of movements for the animator.

Is the method limited to the synthesis of martial arts movements?
The proposed method does not rely on any prior assumption related
to martial arts movements. We chose this application purely because
actions in martial arts can be very fast, acrobatic and often involve
close interaction. The motion generator can be trained on arbitrary
kind of motion and several control modules demonstrated here,
such as locomotion and mixing with reference animation clips, can
potentially be applied without further modification.

11 LIMITATIONS
While the motion generator performs well when trajectories from
different layers are not temporally aligned, conceptually infeasible
inputs will generate unrealistic motion, for instance requesting the
torso to face the opponent while selecting a spinning kick for the
lower body.
When reproducing specific motions, the framework has limited

accuracy, and these discrepancies from the original motion might
be a considerable point of friction for applications where artistic
fidelity is paramount.

Lastly, our system does not automatically extract control signals
for higher-level actions based on the nature of the task: the burden
of designing such controllers still falls on the user. However, we
found this burden to be lighter to iterate on thanks to the modularity
of the framework.

12 CONCLUSION AND FUTURE WORK
In this work, we present a modular deep learning framework to
interactively control the motion of characters engaging in martial
arts combat. We learn a compact representation of the motion from
a very large dataset with our motion generator, designed to take in
input motion trajectories that are intuitive for artist to edit, layer
and blend. From this, our system can produce a large range of
combinations and variations of different motion skills. By separating
the motion generation from the control generation process, our
system also alleviates the problem of long training times typical of
end-to-end systems that learn motion and task together. We also
present several examples of control generators that range from
simple layering and editing operations, direct user-driven input

from a gamepad, or more complex models that generate trajectories
for character interactions.

For future work, we would like to improve on some aspects of the
workflow and expand the capabilities of the framework. When com-
bining different motions, the user needs to specify which subsets of
joint trajectories need to be considered and what kind of operations
need to be applied, being them a complete override or a blend. It will
be interesting to explore ways of automatically inferring these pa-
rameters directly from the type of motion, possibly conditioned on
the user intended result. We would also like to expand the range of
possible interactions to more complex scenarios like ground-game
in Mixed Martial Arts, where points of contact can change quickly
or where the same contacts are achieved with different character
postures, a key aspect of the strategy in this popular discipline. Cur-
rently characters are also assumed to have the same proportions:
adding the capability to adjust the joint trajectories automatically
when the interaction happens between characters of considerably
different proportions will naturally expand the applicability of our
system to more complex and realistic interactions.

ACKNOWLEDGMENTS
We want to thank Mohsen Sardari, Paul McComas and Michael
Robinson for the various support and helpful discussions throughout
this project, as well as Jeremy Mathiesen for his help providing the
dataset. Furthermore, we wish to thank the anonymous reviewers
for their constructive comments. Taku Komura is partly supported
by the start-up fund by The University of Hong Kong (182DRTAKU,
187FRTAKU, 230DRTAKU).

REFERENCES
Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen. 2020.

Unpaired motion style transfer from video to animation. ACM Trans on Graph 39, 4
(2020), 64–1. https://doi.org/10.1145/3386569.3392469

Rami Ali Al-Asqhar, Taku Komura, andMyungGeol Choi. 2013. Relationship descriptors
for interactive motion adaptation. In Proc. SCA. 45–53. https://doi.org/10.1145/
2485895.2485905

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
data-driven responsive control of physics-based characters. ACM Trans on Graph
38, 6 (2019), 1–11. https://doi.org/10.1145/3355089.3356536

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540
(2016). https://arxiv.org/abs/1606.01540

Simon Clavet. 2016. Motion matching and the road to next-gen animation. In Proc. of
GDC.

Stelian Coros, Philippe Beaudoin, and Michiel Van de Panne. 2010. Generalized biped
walking control. ACM Trans on Graph 29, 4 (2010), 130. https://doi.org/10.1145/
1778765.1781156

Martin De Lasa, Igor Mordatch, and Aaron Hertzmann. 2010. Feature-based locomotion
controllers. ACM Trans on Graph 29, 4 (2010), 1–10. https://doi.org/10.1145/1778765.
1781157

Mira Dontcheva, Gary Yngve, and Zoran Popović. 2003. Layered acting for character
animation. ACM Transactions on Graphics (TOG) 22, 3 (2003), 409–416. https:
//doi.org/10.1145/882262.882285

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent
network models for human dynamics. In Proc. ICCV. 4346–4354. https://doi.org/10.
1109/ICCV.2015.494

Thomas Geijtenbeek, Michiel Van De Panne, and A Frank Van Der Stappen. 2013.
Flexible muscle-based locomotion for bipedal creatures. ACM Trans on Graph 32, 6
(2013), 1–11. https://doi.org/10.1145/2508363.2508399

Michael Gleicher. 1997. Motion editing with spacetime constraints. In Proceedings of the
1997 symposium on Interactive 3D graphics. 139–ff. https://doi.org/10.1145/253284.
253321

Michael Gleicher. 1998. Retargetting motion to new characters. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques. 33–42.
https://doi.org/10.1145/280814.280820

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

https://doi.org/10.1145/3386569.3392469
https://doi.org/10.1145/2485895.2485905
https://doi.org/10.1145/2485895.2485905
https://doi.org/10.1145/3355089.3356536
https://arxiv.org/abs/1606.01540
https://doi.org/10.1145/1778765.1781156
https://doi.org/10.1145/1778765.1781156
https://doi.org/10.1145/1778765.1781157
https://doi.org/10.1145/1778765.1781157
https://doi.org/10.1145/882262.882285
https://doi.org/10.1145/882262.882285
https://doi.org/10.1109/ICCV.2015.494
https://doi.org/10.1109/ICCV.2015.494
https://doi.org/10.1145/2508363.2508399
https://doi.org/10.1145/253284.253321
https://doi.org/10.1145/253284.253321
https://doi.org/10.1145/280814.280820

92:14 • Starke et al.

Keith Grochow, Steven L Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-
based inverse kinematics. ACM Transactions on Graphics (TOG) 23, 3 (2004), 522–531.
https://doi.org/10.1145/1015706.1015755

Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust
motion in-betweening. ACM Trans on Graph 39, 4 (2020), 60–1. https://doi.org/10.
1145/3386569.3392480

Rachel Heck and Michael Gleicher. 2007. Parametric motion graphs. In Proc. I3D.
129–136. https://doi.org/10.1145/1230100.1230123

Rachel Heck, Lucas Kovar, andMichael Gleicher. 2006. Splicing upper-body actions with
locomotion. In Computer Graphics Forum, Vol. 25. Wiley Online Library, 459–466.
https://doi.org/10.1111/j.1467-8659.2006.00965.x

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. 2017. Emergence of locomotion
behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017). https:
//arxiv.org/abs/1707.02286

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. 2020. Moglow: Probabilistic
and controllable motion synthesis using normalising flows. ACM Trans on Graph
39, 6 (2020), 1–14. https://doi.org/10.1145/3414685.3417836

Jessica K Hodgins, Wayne L Wooten, David C Brogan, and James F O’Brien. 1995. Ani-
mating human athletics. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques. 71–78. https://doi.org/10.1145/218380.218414

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020. Learned
motion matching. ACM Trans on Graph 39, 4 (2020), 53–1. https://doi.org/10.1145/
3386569.3392440

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans on Graph 36, 4 (2017), 42. https://doi.org/10.1145/
3072959.3073663

Daniel Holden, Jun Saito, and Taku Komura. 2016. A deep learning framework for
character motion synthesis and editing. ACM Trans on Graph 35, 4 (2016). https:
//doi.org/10.1145/2897824.2925975

Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. 2015. Learning motion
manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical Briefs.
ACM, 18. https://doi.org/10.1145/2820903.2820918

Yazhou Huang and Marcelo Kallmann. 2010. Motion parameterization with inverse
blending. In International Conference on Motion in Games. Springer, 242–253. https:
//doi.org/10.1007/978-3-642-16958-8_23

Leslie Ikemoto, Okan Arikan, and David Forsyth. 2009. Generalizing motion edits with
gaussian processes. ACM Trans on Graph 28, 1 (2009), 1–12. https://doi.org/10.1145/
1477926.1477927

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Synthesis of
biologically realistic human motion using joint torque actuation. ACM Trans on
Graph 38, 4 (2019), 1–12. https://doi.org/10.1145/3306346.3322966

Lucas Kovar and Michael Gleicher. 2003. Flexible automatic motion blending with
registration curves. In Symposium on Computer Animation, Vol. 2. San Diego, CA,
USA. https://dl.acm.org/doi/10.5555/846276.846307

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion graphs. ACM Trans
on Graph 21, 3 (2002), 473–482. https://dl.acm.org/doi/10.1145/566654.566605

Jehee Lee and Kang Hoon Lee. 2006. Precomputing avatar behavior from human motion
data. Graphical Models 68, 2 (2006), 158–174. https://doi.org/10.1016/j.gmod.2005.
03.004

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive character animation by
learning multi-objective control. ACM Trans on Graph 37, 6 (2018), 1–10. https:
//doi.org/10.1145/3272127.3275071

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-
actuated human simulation and control. ACM Trans on Graph 38, 4 (2019), 1–13.
https://doi.org/10.1145/3306346.3322972

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-driven biped control. ACM
Trans on Graph 29, 4 (2010), 1–8. https://doi.org/10.1145/1778765.1781155

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010b. Motion fields for interactive character locomotion. ACM Transactions on
Graphics (TOG) 29, 6 (2010), 1–8. https://doi.org/10.1145/1882261.1866160

Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. 2012.
Continuous character control with low-dimensional embeddings. ACM Trans on
Graph 31, 4 (2012), 1–10. https://doi.org/10.1145/2185520.2185524

Zimo Li, Yi Zhou, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. 2017. Auto-
conditioned recurrent networks for extended complex human motion synthesis.
arXiv preprint arXiv:1707.05363 (2017). http://arxiv.org/abs/1707.05363

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. 2020. Character
controllers using motion vaes. ACM Trans on Graph 39, 4 (2020), 40–1. https:
//doi.org/10.1145/3386569.3392422

C Karen Liu, Aaron Hertzmann, and Zoran Popović. 2005. Learning physics-based
motion style with nonlinear inverse optimization. In ACM Trans on Graph, Vol. 24.
ACM, 1071–1081. https://doi.org/10.1145/1073204.1073314

C Karen Liu and Zoran Popović. 2002. Synthesis of complex dynamic character motion
from simple animations. ACM Trans on Graph 21, 3 (2002), 408–416. https://doi.
org/10.1145/566654.566596

Jianyuan Min and Jinxiang Chai. 2012. Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Trans on Graph 31, 6 (2012), 153.
https://doi.org/10.1145/2366145.2366172

MarkMizuguchi, John Buchanan, and TomCalvert. 2001. Data drivenmotion transitions
for interactive games. In Eurographics 2001 Short Presentations, Vol. 2. 6. https:
//doi.org/10.2312/egs.20011039

Tomohiko Mukai and Shigeru Kuriyama. 2005. Geostatistical motion interpolation.
ACM Trans on Graph 24, 3 (2005). http://doi.acm.org/10.1145/1073204.1073313

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
predict-and-simulate policies from unorganized human motion data. ACM Trans on
Graph 38, 6 (2019), 1–11.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Trans on Graph 37, 4 (2018), 1–14. https://doi.org/10.1145/3197517.3201311

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Trans on Graph 36, 4 (2017), 1–13. https://doi.org/10.1145/3072959.3073602

Charles Rose, Michael F Cohen, and Bobby Bodenheimer. 1998. Verbs and adverbs:
Multidimensional motion interpolation. IEEE Computer Graphics and Applications
18, 5 (1998), 32–40. https://doi.org/10.1109/38.708559

Charles F Rose III, Peter-Pike J Sloan, and Michael F Cohen. 2001. Artist-Directed
Inverse-Kinematics Using Radial Basis Function Interpolation. Computer Graphics
Forum 20, 3 (2001), 239–250. https://doi.org/10.1111/1467-8659.00516

Alla Safonova and Jessica K Hodgins. 2007. Construction and optimal search of inter-
polated motion graphs. ACM Trans on Graph 26, 3 (2007). https://doi.org/10.1145/
1276377.1276510

Yeongho Seol, Carol O’Sullivan, and Jehee Lee. 2013. Creature features: online mo-
tion puppetry for non-human characters. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 213–221. https://doi.org/
10.1145/2485895.2485903

Hyun Joon Shin and Hyun Seok Oh. 2006. Fat graphs: constructing an interac-
tive character with continuous controls. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Eurographics Association,
291–298. http://dx.doi.org/10.2312/SCA/SCA06/291-298

Hubert PH Shum, Taku Komura, Masashi Shiraishi, and Shuntaro Yamazaki. 2008.
Interaction patches for multi-character animation. ACM Trans on Graph 27, 5 (2008).
https://doi.org/10.1145/1457515.1409067

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans on Graph 38, 6 (2019), 209. https:
//doi.org/10.1145/3355089.3356505

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Trans on Graph 39, 4
(2020), 54–1. https://doi.org/10.1145/3386569.3392450

Douglas J Wiley and James K Hahn. 1997. Interpolation synthesis of articulated figure
motion. IEEE Computer Graphics and Applications 17, 6 (1997), 39–45. https:
//doi.org/10.1109/38.626968

Andrew Witkin and Zoran Popovic. 1995. Motion warping. In Proceedings of the
22nd annual conference on Computer graphics and interactive techniques. 105–108.
https://doi.org/10.1145/218380.218422

Jungdam Won and Jehee Lee. 2019. Learning body shape variation in physics-based
characters. ACM Trans on Graph 38, 6 (2019), 1–12. https://doi.org/10.1145/3355089.
3356499

KangKang Yin, Kevin Loken, and Michiel Van de Panne. 2007. Simbicon: Simple biped
locomotion control. ACM Trans on Graph 26, 3 (2007), 105. https://doi.org/10.1145/
1276377.1276509

Wenhao Yu, Greg Turk, and C Karen Liu. 2018. Learning symmetric and low-energy
locomotion. ACM Trans on Graph 37, 4 (2018), 1–12. https://doi.org/10.1145/3197517.
3201397

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans on Graph 37, 4 (2018). https:
//doi.org/10.1145/3197517.3201366

A CONTROL MODULE INPUTS & OUTPUTS
The following paragraphs describe the inputs and outputs for the
control modules that were used in our setup. Those modules are
either in form of reference motion clips, motion matching systems,
or neural networks to return the future control series. In case of the
latter, the same expert architecture and hyperparameters as for the
motion generator was used.

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

https://doi.org/10.1145/1015706.1015755
https://doi.org/10.1145/3386569.3392480
https://doi.org/10.1145/3386569.3392480
https://doi.org/10.1145/1230100.1230123
https://doi.org/10.1111/j.1467-8659.2006.00965.x
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1707.02286
https://doi.org/10.1145/3414685.3417836
https://doi.org/10.1145/218380.218414
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1145/2820903.2820918
https://doi.org/10.1007/978-3-642-16958-8_23
https://doi.org/10.1007/978-3-642-16958-8_23
https://doi.org/10.1145/1477926.1477927
https://doi.org/10.1145/1477926.1477927
https://doi.org/10.1145/3306346.3322966
https://dl.acm.org/doi/10.5555/846276.846307
https://dl.acm.org/doi/10.1145/566654.566605
https://doi.org/10.1016/j.gmod.2005.03.004
https://doi.org/10.1016/j.gmod.2005.03.004
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1882261.1866160
https://doi.org/10.1145/2185520.2185524
http://arxiv.org/abs/1707.05363
https://doi.org/10.1145/3386569.3392422
https://doi.org/10.1145/3386569.3392422
https://doi.org/10.1145/1073204.1073314
https://doi.org/10.1145/566654.566596
https://doi.org/10.1145/566654.566596
https://doi.org/10.1145/2366145.2366172
https://doi.org/10.2312/egs.20011039
https://doi.org/10.2312/egs.20011039
http://doi.acm.org/10.1145/1073204.1073313
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1109/38.708559
https://doi.org/10.1111/1467-8659.00516
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/2485895.2485903
https://doi.org/10.1145/2485895.2485903
http://dx.doi.org/10.2312/SCA/SCA06/291-298
https://doi.org/10.1145/1457515.1409067
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3386569.3392450
https://doi.org/10.1109/38.626968
https://doi.org/10.1109/38.626968
https://doi.org/10.1145/218380.218422
https://doi.org/10.1145/3355089.3356499
https://doi.org/10.1145/3355089.3356499
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366

Neural Animation Layering for Synthesizing Martial Arts Movements • 92:15

A.1 Locomotion Module
Inputs. The locomotion module is a neural network which in-

put X𝐿𝑂𝐶
𝑖

= {T𝑖 ,P𝑖 ,M𝑖 } contains the root trajectory control, local
motion phases and current pose of the character. Both the root tra-
jectory control and locomotion phases are sampled at the current
frame 𝑖 and sampled in the past-to-current time window T 1𝑠

−1𝑠 = 13.
We use the phases P𝑖 as the input to the gating network while the
rest T𝑖 andM𝑖 are the input to the main network.

• Root Trajectory Control T𝑖 = {T𝑝
𝑖
,T𝑟
𝑖
,T𝑣
𝑖
,T𝑙
𝑖
,T𝑎
𝑖
} is used as

control series input to the locomotion module, where T𝑝
𝑖
∈ R2T ,

trajectory directions T𝑟
𝑖
∈ R2T , trajectory velocities T𝑣

𝑖
∈ R2T ,

trajectory lengths T𝑙
𝑖
∈ RT and trajectory arcs T𝑎

𝑖
∈ RT .

• Motion StateM𝑖 is a subset of 3D transformation for the selected
key bones where 𝐾 = 11, represented by position m𝑝

𝑖
∈ R3𝐾 ,

forward and up direction m𝑟
𝑖
∈ R6𝐾 and velocity m𝑣

𝑖
∈ R3𝐾 .

• Local Motion Phases P𝑖 = Θ𝑖 ∈ R2𝐹 T are each represented by
2D phase vectors of changing amplitude for 𝐹 = 2 key contact
bones of feet.

Outputs. The output of the locomotionmoduleY𝐿𝑂𝐶
𝑖

= {Ĉ𝑖+1, P̂𝑖+1}
contains the future control series Ĉ𝑖+1 and local motion phase up-
dates P̂𝑖+1 at next frame 𝑖 +1, sampled for the time window T 1𝑠

0𝑠 = 7.

• Control Series Ĉ𝑖+1 are the future motion trajectories at frame
𝑖 + 1.

• Local Motion Phase Updates P̂𝑖+1 = {Θ𝑖+1,ΔΘ𝑖+1} contains
the phase vectors Θ𝑖+1 ∈ R2𝐾F as well as their updates ΔΘ𝑖+1 ∈
R2𝐾F for the 𝐹 = 2 key contact bones of feet.

A.2 Attacking Module
Inputs. The attacking module is a set of reference motion clips

that are queried by X𝐴𝑇𝑇
𝑖

= { 𝑗}:
• Attacking Index 𝑗 ∈ R1 is a data pointer used to fetch an attack-
ing sequence from the attacking database, which is assigned by
either user or game logic.

Outputs. Y𝐴𝑇𝑇
𝑖

= {Ĉ𝑖+1, ..., Ĉ𝑖+𝑆 }:

• Control Series Sequence Ĉ𝑖+1, ..., Ĉ𝑖+𝑆 is a sequence of future
control series, sampled from the selected attacking clip with a
moving time window T 1𝑠

0𝑠 = 7 and 𝑆 is the length of that clip.

A.3 Targeting Module
Inputs. The targeting module is a neural network which input

X𝑇𝐴𝑅
𝑖

= {C𝑖+1, P𝑖 ,R𝑖 , ĈV
𝑖+1} contains the character’s own control

series C𝑖+1, future velocity magnitudes of control series ĈV
𝑖+1, op-

ponent’s pose P𝑖 and root transformation R𝑖 . All inputs are trans-
formed into character A’s root space. We use ĈV

𝑖+1 as the input to
the gating network while {C𝑖+1, P𝑖 ,R𝑖 } as the input to the main
network.

• Control Series C𝑖+1 are character A’s motion trajectories (attack-
ing motion) at frame 𝑖 + 1, sampled for the time window T 1𝑠

−1𝑠 = 13
• Opponent Character Pose P𝑖 = {p𝑖 , r𝑖 , v𝑖 } is the pose of the
opponent character B at the current frame 𝑖 with 𝐵 = 24 bones,

represented by position P
𝑝

𝑖 ∈ R3𝐵 , forward and up direction P
𝑟
𝑖 ∈

R6𝐵 and velocity P
𝑣
𝑖 ∈ R3𝐵 .

• Opponent Character Root R𝑖 is the root transformation of char-
acter B, represented by position R

𝑝

𝑖 ∈ R3 and forward direction
R
𝑑
𝑖 ∈ R2.

• Velocity Magnitudes VĈ𝑖+1
∈ R7𝐾 are the joint velocity magni-

tudes of the future control series Ĉ𝑖+1 at frame 𝑖 + 1 sampled for
the time window T 1𝑠

0𝑠 = 7 with 𝐾 = 11 key joints.

Outputs. The output of the targeting module is Y𝑇𝐴𝑅
𝑖

= {Ĉ𝑖+1}:

• Control Series Ĉ𝑖+1 are the future motion trajectories of char-
acter A, but represented in redirected space 𝑇𝐴

𝐵
of the opponent

character B (see Fig. 3), sampled for the time window T 1𝑠
0𝑠 = 7.

A.4 Avoidance Module
Inputs. The avoidance module is a neural network which input

X𝐴𝑉𝑂
𝑖

= {C𝑖+1, P𝑖 ,D𝑖 ,VĈ𝑖+1
} contains the opponent character B’s

control seriesC𝑖+1, future velocitymagnitudes of control seriesV
Ĉ𝑖+1

,
character A’s current pose P𝑖 and joint distances D𝑖 . All inputs are
transformed into character A’s root space. We use V

Ĉ𝑖+1
as the input

to the gating network while {C𝑖+1, P𝑖 ,D𝑖 } as the input to the main
network.

• Control Series C𝑖+1 are the motion trajectories of the opponent
character B (attacking motion) at frame 𝑖 + 1, sampled for the time
window T 1𝑠

−1𝑠 = 13
• Character Pose P𝑖 = {p𝑖 , r𝑖 , v𝑖 } is the pose of character A at the
current frame 𝑖 with 𝐵 = 24 bones, represented by position P𝑝

𝑖
∈

R3𝐵 , forward and up direction P𝑟
𝑖
∈ R6𝐵 and velocity P𝑣

𝑖
∈ R3𝐵 .

• Joint Distances D𝑖 ∈ R𝐾2T′
is a matrix representing the pair-

wise distances between opponent character B’s key joints at cur-
rent and in the future to Character A’s current key joints, where
𝐾 = 11 is the number of key joints and T ′1𝑠

0𝑠 = 7 is the current-to-
future sample count.

• Velocity Magnitudes V
Ĉ𝑖+1

∈ R7𝐾 are the joint velocity magni-

tudes of the future control series Ĉ𝑖+1 at frame 𝑖 + 1 sampled for
the time window T 1𝑠

0𝑠 = 7 with 𝐾 = 11 key joints.

Outputs. The output of the targeting module Y𝐴𝑉𝑂
𝑖

= {Ĉ𝑖+1}:

• Control Series Ĉ𝑖+1 are the future motion trajectories of char-
acter A, sampled for the time window T 1𝑠

0𝑠 = 7 with content of
the corresponding avoidance motion. Similarly to attacking, the
control series is represented in the redirected space 𝑇𝐴

𝐵
of the

opponent character B (see Fig. 3).

A.5 Close-Interaction Module
Inputs. The close-interaction module is a neural network which

input X𝐶𝐼
𝑖

= {C𝑖+1, P𝑖 , P𝑖 ,VĈ𝑖+1
} contains the opponent charac-

ter B’s control series C𝑖+1, future velocity magnitudes of control
seriesV

Ĉ𝑖+1
, opponent character B’s pose P𝑖 and character A’s cur-

rent pose P𝑖 . All inputs are transformed into opponent character B’s

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

92:16 • Starke et al.

root space. We use V
Ĉ𝑖+1

as the input to the gating network while

{C𝑖+1, P𝑖 , P𝑖 } as the input to the main network.
• Control Series C𝑖+1 are the motion trajectories of the opponent
character B (dominant motion) at frame 𝑖 + 1, sampled for the time
window T 1𝑠

−1𝑠 = 13
• Opponent Character Pose P𝑖 = {p𝑖 , r𝑖 , v𝑖 } is the pose of the
opponent character B at the current frame 𝑖 with 𝐵 = 24 bones,
represented by position P

𝑝

𝑖 ∈ R3𝐵 , forward and up direction P
𝑟
𝑖 ∈

R6𝐵 and velocity P
𝑣
𝑖 ∈ R3𝐵 .

• Character Pose P𝑖 = {p𝑖 , r𝑖 , v𝑖 } is the pose of character A at the
current frame 𝑖 with 𝐵 = 24 bones, represented by position P𝑝

𝑖
∈

R3𝐵 , forward and up direction P𝑟
𝑖
∈ R6𝐵 and velocity P𝑣

𝑖
∈ R3𝐵 .

• Velocity Magnitudes V
Ĉ𝑖+1

∈ R7𝐾 are the joint velocity magni-

tudes of the future control series Ĉ𝑖+1 at frame 𝑖 + 1 sampled for
the time window T 1𝑠

0𝑠 = 7 with 𝐾 = 11 key joints.

Outputs. The output of the close-interaction module is Y𝐶𝐼
𝑖

=

{Ĉ𝑖+1, I𝑖 }:
• Control Series Ĉ𝑖+1 are the futuremotion trajectories of character
A at frame 𝑖 + 1, sampled for the time window T 1𝑠

0𝑠 = 7 with
content of the corresponding avoidance motion and represented
in opponent B’s root space.

• ConstraintMatrix I𝑖 ∈ R4𝑁
2
is a pairwise set of joint constraints

between two characters (see Section 5) where𝑁 = 11 is the number
of the key joints. For each pair of key joints 𝑗𝑘 and 𝑗𝑘′ , where 𝑗𝑘
is a key joint of character A and 𝑗𝑘′ is a key joint of character B,
a 4D-vector is predicted. This 4D vector includes a binary label
indicating whether the contact is on/off and a vector which is the
relative position of joint 𝑗𝑘 in joint the space of joint 𝑗𝑘′ .

A.6 Hit Reaction Module
Inputs. The hit reaction module is a motion matching system

which uses a 4D vector X𝐻
𝑖

= {𝑟, 𝑣} as query input to a small hit
reaction database:
• Category Label 𝑟 ∈ R1 indicates the region where the contact
happened.

• Attacking Velocity 𝑣 ∈ R3 is the velocity impact vector of the
attacking joint on the body collider that triggers the hit reaction
behavior.

Outputs. The hit reaction module will query the database and find
a clip with the same contact impact region and minimum contact
velocity difference. Afterwards, the output of the hit reactionmodule
will be Y𝐻

𝑖
= {C𝑖+1, ...,C𝑖+𝑆 }:

• Control Series Sequence Ĉ𝑖+1, ..., Ĉ𝑖+𝑆 is a sequence of future
control series, sampled from the best-matched hit reaction clip
with a moving time window T 1𝑠

0𝑠 = 7 and 𝑆 is the length of that
clip.

ACM Trans. Graph., Vol. 40, No. 4, Article 92. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Motion Generator
	5 Control Modules
	6 Control Interface
	7 Network Training
	8 Character Control System
	9 Experiments and Evaluation
	9.1 Animated Results
	9.2 Override Motion Layering
	9.3 Additive Motion Layering
	9.4 Transition Motion Synthesis
	9.5 Signature Movements
	9.6 Character Interactions
	9.7 Reconstruction Quality
	9.8 Generalization Capacity
	9.9 Learned Network Weights

	10 Discussions
	11 Limitations
	12 Conclusion and Future Work
	Acknowledgments
	References
	A Control Module Inputs & Outputs
	A.1 Locomotion Module
	A.2 Attacking Module
	A.3 Targeting Module
	A.4 Avoidance Module
	A.5 Close-Interaction Module
	A.6 Hit Reaction Module

